Balancing Privacy and Performance for Private Federated Learning
Algorithms
- URL: http://arxiv.org/abs/2304.05127v2
- Date: Fri, 18 Aug 2023 19:57:00 GMT
- Title: Balancing Privacy and Performance for Private Federated Learning
Algorithms
- Authors: Xiangjian Hou, Sarit Khirirat, Mohammad Yaqub, and Samuel Horvath
- Abstract summary: Federated learning (FL) is a distributed machine learning framework where multiple clients collaborate to train a model without exposing their private data.
FL algorithms frequently employ a differential privacy mechanism that introduces noise into each client's model updates before sharing.
We show that an optimal balance exists between the number of local steps and communication rounds, one that maximizes the convergence performance within a given privacy budget.
- Score: 4.681076651230371
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is a distributed machine learning (ML) framework
where multiple clients collaborate to train a model without exposing their
private data. FL involves cycles of local computations and bi-directional
communications between the clients and server. To bolster data security during
this process, FL algorithms frequently employ a differential privacy (DP)
mechanism that introduces noise into each client's model updates before
sharing. However, while enhancing privacy, the DP mechanism often hampers
convergence performance. In this paper, we posit that an optimal balance exists
between the number of local steps and communication rounds, one that maximizes
the convergence performance within a given privacy budget. Specifically, we
present a proof for the optimal number of local steps and communication rounds
that enhance the convergence bounds of the DP version of the ScaffNew
algorithm. Our findings reveal a direct correlation between the optimal number
of local steps, communication rounds, and a set of variables, e.g the DP
privacy budget and other problem parameters, specifically in the context of
strongly convex optimization. We furthermore provide empirical evidence to
validate our theoretical findings.
Related papers
- CorBin-FL: A Differentially Private Federated Learning Mechanism using Common Randomness [6.881974834597426]
Federated learning (FL) has emerged as a promising framework for distributed machine learning.
We introduce CorBin-FL, a privacy mechanism that uses correlated binary quantization to achieve differential privacy.
We also propose AugCorBin-FL, an extension that, in addition to PLDP, user-level and sample-level central differential privacy guarantees.
arXiv Detail & Related papers (2024-09-20T00:23:44Z) - Universally Harmonizing Differential Privacy Mechanisms for Federated Learning: Boosting Accuracy and Convergence [22.946928984205588]
Differentially private federated learning (DP-FL) is a promising technique for collaborative model training.
We propose the first DP-FL framework (namely UDP-FL) which universally harmonizes any randomization mechanism.
We show that UDP-FL exhibits substantial resilience against different inference attacks.
arXiv Detail & Related papers (2024-07-20T00:11:59Z) - QMGeo: Differentially Private Federated Learning via Stochastic Quantization with Mixed Truncated Geometric Distribution [1.565361244756411]
Federated learning (FL) is a framework which allows multiple users to jointly train a global machine learning (ML) model.
One key motivation of such distributed frameworks is to provide privacy guarantees to the users.
We present a novel quantization method, utilizing a mixed geometric distribution to introduce the randomness needed to provide DP.
arXiv Detail & Related papers (2023-12-10T04:44:53Z) - Binary Federated Learning with Client-Level Differential Privacy [7.854806519515342]
Federated learning (FL) is a privacy-preserving collaborative learning framework.
Existing FL systems typically adopt Federated Average (FedAvg) as the training algorithm.
We propose a communication-efficient FL training algorithm with differential privacy guarantee.
arXiv Detail & Related papers (2023-08-07T06:07:04Z) - Theoretically Principled Federated Learning for Balancing Privacy and
Utility [61.03993520243198]
We propose a general learning framework for the protection mechanisms that protects privacy via distorting model parameters.
It can achieve personalized utility-privacy trade-off for each model parameter, on each client, at each communication round in federated learning.
arXiv Detail & Related papers (2023-05-24T13:44:02Z) - On Differential Privacy for Federated Learning in Wireless Systems with
Multiple Base Stations [90.53293906751747]
We consider a federated learning model in a wireless system with multiple base stations and inter-cell interference.
We show the convergence behavior of the learning process by deriving an upper bound on its optimality gap.
Our proposed scheduler improves the average accuracy of the predictions compared with a random scheduler.
arXiv Detail & Related papers (2022-08-25T03:37:11Z) - Differentially Private Federated Bayesian Optimization with Distributed
Exploration [48.9049546219643]
We introduce differential privacy (DP) into the training of deep neural networks through a general framework for adding DP to iterative algorithms.
We show that DP-FTS-DE achieves high utility (competitive performance) with a strong privacy guarantee.
We also use real-world experiments to show that DP-FTS-DE induces a trade-off between privacy and utility.
arXiv Detail & Related papers (2021-10-27T04:11:06Z) - Understanding Clipping for Federated Learning: Convergence and
Client-Level Differential Privacy [67.4471689755097]
This paper empirically demonstrates that the clipped FedAvg can perform surprisingly well even with substantial data heterogeneity.
We provide the convergence analysis of a differential private (DP) FedAvg algorithm and highlight the relationship between clipping bias and the distribution of the clients' updates.
arXiv Detail & Related papers (2021-06-25T14:47:19Z) - Low-Latency Federated Learning over Wireless Channels with Differential
Privacy [142.5983499872664]
In federated learning (FL), model training is distributed over clients and local models are aggregated by a central server.
In this paper, we aim to minimize FL training delay over wireless channels, constrained by overall training performance as well as each client's differential privacy (DP) requirement.
arXiv Detail & Related papers (2021-06-20T13:51:18Z) - Federated Learning with Sparsification-Amplified Privacy and Adaptive
Optimization [27.243322019117144]
Federated learning (FL) enables distributed agents to collaboratively learn a centralized model without sharing their raw data with each other.
We propose a new FL framework with sparsification-amplified privacy.
Our approach integrates random sparsification with gradient perturbation on each agent to amplify privacy guarantee.
arXiv Detail & Related papers (2020-08-01T20:22:57Z) - User-Level Privacy-Preserving Federated Learning: Analysis and
Performance Optimization [77.43075255745389]
Federated learning (FL) is capable of preserving private data from mobile terminals (MTs) while training the data into useful models.
From a viewpoint of information theory, it is still possible for a curious server to infer private information from the shared models uploaded by MTs.
We propose a user-level differential privacy (UDP) algorithm by adding artificial noise to the shared models before uploading them to servers.
arXiv Detail & Related papers (2020-02-29T10:13:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.