Dream to Explore: Adaptive Simulations for Autonomous Systems
- URL: http://arxiv.org/abs/2110.14157v1
- Date: Wed, 27 Oct 2021 04:27:28 GMT
- Title: Dream to Explore: Adaptive Simulations for Autonomous Systems
- Authors: Zahra Sheikhbahaee, Dongshu Luo, Blake VanBerlo, S. Alex Yun, Adam
Safron, Jesse Hoey
- Abstract summary: We tackle the problem of learning to control dynamical systems by applying Bayesian nonparametric methods.
By employing Gaussian processes to discover latent world dynamics, we mitigate common data efficiency issues observed in reinforcement learning.
Our algorithm jointly learns a world model and policy by optimizing a variational lower bound of a log-likelihood.
- Score: 3.0664963196464448
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One's ability to learn a generative model of the world without supervision
depends on the extent to which one can construct abstract knowledge
representations that generalize across experiences. To this end, capturing an
accurate statistical structure from observational data provides useful
inductive biases that can be transferred to novel environments. Here, we tackle
the problem of learning to control dynamical systems by applying Bayesian
nonparametric methods, which is applied to solve visual servoing tasks. This is
accomplished by first learning a state space representation, then inferring
environmental dynamics and improving the policies through imagined future
trajectories. Bayesian nonparametric models provide automatic model adaptation,
which not only combats underfitting and overfitting, but also allows the
model's unbounded dimension to be both flexible and computationally tractable.
By employing Gaussian processes to discover latent world dynamics, we mitigate
common data efficiency issues observed in reinforcement learning and avoid
introducing explicit model bias by describing the system's dynamics. Our
algorithm jointly learns a world model and policy by optimizing a variational
lower bound of a log-likelihood with respect to the expected free energy
minimization objective function. Finally, we compare the performance of our
model with the state-of-the-art alternatives for continuous control tasks in
simulated environments.
Related papers
- Model-based Policy Optimization using Symbolic World Model [46.42871544295734]
The application of learning-based control methods in robotics presents significant challenges.
One is that model-free reinforcement learning algorithms use observation data with low sample efficiency.
We suggest approximating transition dynamics with symbolic expressions, which are generated via symbolic regression.
arXiv Detail & Related papers (2024-07-18T13:49:21Z) - Efficient Imitation Learning with Conservative World Models [54.52140201148341]
We tackle the problem of policy learning from expert demonstrations without a reward function.
We re-frame imitation learning as a fine-tuning problem, rather than a pure reinforcement learning one.
arXiv Detail & Related papers (2024-05-21T20:53:18Z) - ReCoRe: Regularized Contrastive Representation Learning of World Model [21.29132219042405]
We present a world model that learns invariant features using contrastive unsupervised learning and an intervention-invariant regularizer.
Our method outperforms current state-of-the-art model-based and model-free RL methods and significantly improves on out-of-distribution point navigation tasks evaluated on the iGibson benchmark.
arXiv Detail & Related papers (2023-12-14T15:53:07Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
We propose a method for learning dynamical systems from high-dimensional empirical data.
We focus on the setting in which data are available from multiple different instances of a system.
We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-06-21T07:52:07Z) - Model-Based Reinforcement Learning with Isolated Imaginations [61.67183143982074]
We propose Iso-Dream++, a model-based reinforcement learning approach.
We perform policy optimization based on the decoupled latent imaginations.
This enables long-horizon visuomotor control tasks to benefit from isolating mixed dynamics sources in the wild.
arXiv Detail & Related papers (2023-03-27T02:55:56Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
We present a new continual learning approach for visual dynamics modeling and explore its efficacy in visual control and forecasting.
We first propose the mixture world model that learns task-specific dynamics priors with a mixture of Gaussians, and then introduce a new training strategy to overcome catastrophic forgetting.
Our model remarkably outperforms the naive combinations of existing continual learning and visual RL algorithms on DeepMind Control and Meta-World benchmarks with continual visual control tasks.
arXiv Detail & Related papers (2023-03-12T05:08:03Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z) - Context-aware Dynamics Model for Generalization in Model-Based
Reinforcement Learning [124.9856253431878]
We decompose the task of learning a global dynamics model into two stages: (a) learning a context latent vector that captures the local dynamics, then (b) predicting the next state conditioned on it.
In order to encode dynamics-specific information into the context latent vector, we introduce a novel loss function that encourages the context latent vector to be useful for predicting both forward and backward dynamics.
The proposed method achieves superior generalization ability across various simulated robotics and control tasks, compared to existing RL schemes.
arXiv Detail & Related papers (2020-05-14T08:10:54Z) - Planning from Images with Deep Latent Gaussian Process Dynamics [2.924868086534434]
Planning is a powerful approach to control problems with known environment dynamics.
In unknown environments the agent needs to learn a model of the system dynamics to make planning applicable.
We propose to learn a deep latent Gaussian process dynamics (DLGPD) model that learns low-dimensional system dynamics from environment interactions with visual observations.
arXiv Detail & Related papers (2020-05-07T21:29:45Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.