Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers
- URL: http://arxiv.org/abs/2306.12077v1
- Date: Wed, 21 Jun 2023 07:52:07 GMT
- Title: Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers
- Authors: Kai Lagemann, Christian Lagemann, Sach Mukherjee
- Abstract summary: We propose a method for learning dynamical systems from high-dimensional empirical data.
We focus on the setting in which data are available from multiple different instances of a system.
We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets.
- Score: 0.6767885381740952
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a method for learning dynamical systems from high-dimensional
empirical data that combines variational autoencoders and (spatio-)temporal
attention within a framework designed to enforce certain
scientifically-motivated invariances. We focus on the setting in which data are
available from multiple different instances of a system whose underlying
dynamical model is entirely unknown at the outset. The approach rests on a
separation into an instance-specific encoding (capturing initial conditions,
constants etc.) and a latent dynamics model that is itself universal across all
instances/realizations of the system. The separation is achieved in an
automated, data-driven manner and only empirical data are required as inputs to
the model. The approach allows effective inference of system behaviour at any
continuous time but does not require an explicit neural ODE formulation, which
makes it efficient and highly scalable. We study behaviour through simple
theoretical analyses and extensive experiments on synthetic and real-world
datasets. The latter investigate learning the dynamics of complex systems based
on finite data and show that the proposed approach can outperform
state-of-the-art neural-dynamical models. We study also more general inductive
bias in the context of transfer to data obtained under entirely novel system
interventions. Overall, our results provide a promising new framework for
efficiently learning dynamical models from heterogeneous data with potential
applications in a wide range of fields including physics, medicine, biology and
engineering.
Related papers
- ICODE: Modeling Dynamical Systems with Extrinsic Input Information [14.521146920900316]
We introduce emph Input Concomitant Neural ODEs (ICODEs), which incorporate precise real-time input information into the learning process of the models.
We validate our method through experiments on several representative real dynamics.
This work offers a valuable class of neural ODE models for understanding physical systems with explicit external input information.
arXiv Detail & Related papers (2024-11-21T07:57:59Z) - eXponential FAmily Dynamical Systems (XFADS): Large-scale nonlinear Gaussian state-space modeling [9.52474299688276]
We introduce a low-rank structured variational autoencoder framework for nonlinear state-space graphical models.
We show that our approach consistently demonstrates the ability to learn a more predictive generative model.
arXiv Detail & Related papers (2024-03-03T02:19:49Z) - CoDBench: A Critical Evaluation of Data-driven Models for Continuous
Dynamical Systems [8.410938527671341]
We introduce CodBench, an exhaustive benchmarking suite comprising 11 state-of-the-art data-driven models for solving differential equations.
Specifically, we evaluate 4 distinct categories of models, viz., feed forward neural networks, deep operator regression models, frequency-based neural operators, and transformer architectures.
We conduct extensive experiments, assessing the operators' capabilities in learning, zero-shot super-resolution, data efficiency, robustness to noise, and computational efficiency.
arXiv Detail & Related papers (2023-10-02T21:27:54Z) - Stretched and measured neural predictions of complex network dynamics [2.1024950052120417]
Data-driven approximations of differential equations present a promising alternative to traditional methods for uncovering a model of dynamical systems.
A recently employed machine learning tool for studying dynamics is neural networks, which can be used for data-driven solution finding or discovery of differential equations.
We show that extending the model's generalizability beyond traditional statistical learning theory limits is feasible.
arXiv Detail & Related papers (2023-01-12T09:44:59Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.