Diversity Enhanced Active Learning with Strictly Proper Scoring Rules
- URL: http://arxiv.org/abs/2110.14171v1
- Date: Wed, 27 Oct 2021 05:02:11 GMT
- Title: Diversity Enhanced Active Learning with Strictly Proper Scoring Rules
- Authors: Wei Tan, Lan Du, Wray Buntine
- Abstract summary: We study acquisition functions for active learning (AL) for text classification.
We convert the Expected Loss Reduction (ELR) method to estimate the increase in (strictly proper) scores like log probability or negative mean square error.
We show that the use of mean square error and log probability with BEMPS yields robust acquisition functions.
- Score: 4.81450893955064
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study acquisition functions for active learning (AL) for text
classification. The Expected Loss Reduction (ELR) method focuses on a Bayesian
estimate of the reduction in classification error, recently updated with Mean
Objective Cost of Uncertainty (MOCU). We convert the ELR framework to estimate
the increase in (strictly proper) scores like log probability or negative mean
square error, which we call Bayesian Estimate of Mean Proper Scores (BEMPS). We
also prove convergence results borrowing techniques used with MOCU. In order to
allow better experimentation with the new acquisition functions, we develop a
complementary batch AL algorithm, which encourages diversity in the vector of
expected changes in scores for unlabelled data. To allow high performance text
classifiers, we combine ensembling and dynamic validation set construction on
pretrained language models. Extensive experimental evaluation then explores how
these different acquisition functions perform. The results show that the use of
mean square error and log probability with BEMPS yields robust acquisition
functions, which consistently outperform the others tested.
Related papers
- Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - Bayesian Estimate of Mean Proper Scores for Diversity-Enhanced Active
Learning [6.704927458661697]
Expected Loss Reduction (ELR) focuses on a Bayesian estimate of the reduction in classification error, and more general costs fit in the same framework.
We propose Bayesian Estimate of Mean Proper Scores (BEMPS) to estimate the increase in strictly proper scores.
We show that BEMPS yields robust acquisition functions and well-calibrated classifiers, and consistently outperforms the others tested.
arXiv Detail & Related papers (2023-12-15T11:02:17Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
We propose a novel equation discovery method based on Kernel learning and BAyesian Spike-and-Slab priors (KBASS)
We use kernel regression to estimate the target function, which is flexible, expressive, and more robust to data sparsity and noises.
We develop an expectation-propagation expectation-maximization algorithm for efficient posterior inference and function estimation.
arXiv Detail & Related papers (2023-10-09T03:55:09Z) - Controlling Learned Effects to Reduce Spurious Correlations in Text
Classifiers [6.662800021628275]
We propose an algorithm to regularize the learnt effect of the features on the model's prediction to the estimated effect of feature on label.
On toxicity and IMDB review datasets, the proposed algorithm minimises spurious correlations and improves the minority group.
arXiv Detail & Related papers (2023-05-26T12:15:54Z) - On the Efficacy of Generalization Error Prediction Scoring Functions [33.24980750651318]
Generalization error predictors (GEPs) aim to predict model performance on unseen distributions by deriving dataset-level error estimates from sample-level scores.
We rigorously study the effectiveness of popular scoring functions (confidence, local manifold smoothness, model agreement) independent of mechanism choice.
arXiv Detail & Related papers (2023-03-23T18:08:44Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Adaptive Dimension Reduction and Variational Inference for Transductive
Few-Shot Classification [2.922007656878633]
We propose a new clustering method based on Variational Bayesian inference, further improved by Adaptive Dimension Reduction.
Our proposed method significantly improves accuracy in the realistic unbalanced transductive setting on various Few-Shot benchmarks.
arXiv Detail & Related papers (2022-09-18T10:29:02Z) - Efficient and Differentiable Conformal Prediction with General Function
Classes [96.74055810115456]
We propose a generalization of conformal prediction to multiple learnable parameters.
We show that it achieves approximate valid population coverage and near-optimal efficiency within class.
Experiments show that our algorithm is able to learn valid prediction sets and improve the efficiency significantly.
arXiv Detail & Related papers (2022-02-22T18:37:23Z) - Robust Importance Sampling for Error Estimation in the Context of
Optimal Bayesian Transfer Learning [13.760785726194591]
We introduce a novel class of Bayesian minimum mean-square error (MMSE) estimators for optimal Bayesian transfer learning (OBTL)
We employ the proposed estimator to evaluate the classification accuracy of a broad family of classifiers that span diverse learning capabilities.
Experimental results based on both synthetic data as well as real-world RNA sequencing (RNA-seq) data show that our proposed OBTL error estimation scheme clearly outperforms standard error estimators.
arXiv Detail & Related papers (2021-09-05T19:11:33Z) - Improving Music Performance Assessment with Contrastive Learning [78.8942067357231]
This study investigates contrastive learning as a potential method to improve existing MPA systems.
We introduce a weighted contrastive loss suitable for regression tasks applied to a convolutional neural network.
Our results show that contrastive-based methods are able to match and exceed SoTA performance for MPA regression tasks.
arXiv Detail & Related papers (2021-08-03T19:24:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.