論文の概要: RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images
- arxiv url: http://arxiv.org/abs/2110.14223v1
- Date: Wed, 27 Oct 2021 07:18:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-28 14:25:41.186141
- Title: RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images
- Title(参考訳): rrnet:光リモートセンシング画像における高度物体検出のための並列マルチスケール注意付き関係推論ネットワーク
- Authors: Runmin Cong, Yumo Zhang, Leyuan Fang, Jun Li, Chunjie Zhang, Yao Zhao,
and Sam Kwong
- Abstract要約: 光リモートセンシング画像(RSI)のためのSODは、光学RSIから視覚的に特徴的な物体や領域を探索・抽出することを目的としている。
光学RSIにおけるSODに並列なマルチスケールアテンションを持つリレーショナル推論ネットワークを提案する。
提案するRRNetは,既存の最先端SODコンペティタよりも質的,定量的に優れている。
- 参考スコア(独自算出の注目度): 82.1679766706423
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Salient object detection (SOD) for optical remote sensing images (RSIs) aims
at locating and extracting visually distinctive objects/regions from the
optical RSIs. Despite some saliency models were proposed to solve the intrinsic
problem of optical RSIs (such as complex background and scale-variant objects),
the accuracy and completeness are still unsatisfactory. To this end, we propose
a relational reasoning network with parallel multi-scale attention for SOD in
optical RSIs in this paper. The relational reasoning module that integrates the
spatial and the channel dimensions is designed to infer the semantic
relationship by utilizing high-level encoder features, thereby promoting the
generation of more complete detection results. The parallel multi-scale
attention module is proposed to effectively restore the detail information and
address the scale variation of salient objects by using the low-level features
refined by multi-scale attention. Extensive experiments on two datasets
demonstrate that our proposed RRNet outperforms the existing state-of-the-art
SOD competitors both qualitatively and quantitatively.
- Abstract(参考訳): 光リモートセンシング画像(RSI)のためのSODは、光学RSIから視覚的に特徴的な物体や領域を探索・抽出することを目的としている。
光学RSI(複雑な背景やスケール不変物体など)の本質的な問題を解くために、いくつかの正当性モデルが提案されたが、精度と完全性はまだ不十分である。
そこで本論文では,光rssにおけるsodに対する並列マルチスケール注意を持つ関係推論ネットワークを提案する。
空間次元とチャネル次元を統合する関係推論モジュールは、高レベルエンコーダの特徴を利用して意味関係を推論し、より完全な検出結果を生成するように設計されている。
並列マルチスケールアテンションモジュールは,多スケールアテンションによって改良された低レベル特徴を用いて,詳細情報を効果的に復元し,サリアントオブジェクトのスケール変動に対処する。
2つのデータセットに対する大規模な実験により、提案したRRNetは、既存の最先端のSOD競合よりも質的かつ定量的に優れていることが示された。
関連論文リスト
- Renormalized Connection for Scale-preferred Object Detection in Satellite Imagery [51.83786195178233]
我々は、効率的な特徴抽出の観点から再正規化群理論を実装するために、知識発見ネットワーク(KDN)を設計する。
KDN上の再正規化接続(RC)は、マルチスケール特徴の「相乗的焦点」を可能にする。
RCはFPNベースの検出器のマルチレベル特徴の分割・対数機構を幅広いスケールで予測されたタスクに拡張する。
論文 参考訳(メタデータ) (2024-09-09T13:56:22Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS)は、コンピュータビジョンと自然言語処理を組み合わせた新しい課題である。
従来の参照画像(RIS)アプローチは、空中画像に見られる複雑な空間スケールと向きによって妨げられている。
本稿ではRMSIN(Rotated Multi-Scale Interaction Network)を紹介する。
論文 参考訳(メタデータ) (2023-12-19T08:14:14Z) - Multimodal Transformer Using Cross-Channel attention for Object Detection in Remote Sensing Images [1.662438436885552]
マルチモーダル融合は、複数のモーダルからのデータを融合することで精度を高めることが決定されている。
早期に異なるチャネル間の関係をマッピングするための新しいマルチモーダル融合戦略を提案する。
本手法は,中期・後期の手法とは対照的に,早期の融合に対処することにより,既存の手法と比較して,競争力や性能に優れる。
論文 参考訳(メタデータ) (2023-10-21T00:56:11Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
単一ハイパースペクトル像超解像(単一HSI-SR)は、低分解能観測から高分解能ハイパースペクトル像を復元することを目的としている。
本稿では,1つのHSI-SRの繰り返し精製構造を持つESSA注目組込みトランスフォーマネットワークであるESSAformerを提案する。
論文 参考訳(メタデータ) (2023-07-26T07:45:14Z) - Attention Guided Network for Salient Object Detection in Optical Remote
Sensing Images [16.933770557853077]
光リモートセンシング画像(RSI-SOD)における局所物体検出は非常に難しい作業である。
本稿では,光学RSIにおけるSODのための新しい注意誘導ネットワーク(AGNet)を提案する。
AGNetは、他の最先端の手法と比較して、競争力がある。
論文 参考訳(メタデータ) (2022-07-05T01:01:03Z) - A lightweight multi-scale context network for salient object detection
in optical remote sensing images [16.933770557853077]
光学RSIにおける有能な物体検出のためのマルチスケールコンテキストネットワークMSCNetを提案する。
具体的には、有能なオブジェクトのスケール変動に対処するために、マルチスケールコンテキスト抽出モジュールを採用する。
複雑な背景の完全正当性オブジェクトを正確に検出するために,注意に基づくピラミッド特徴集約機構を設計する。
論文 参考訳(メタデータ) (2022-05-18T14:32:47Z) - Dense Attention Fluid Network for Salient Object Detection in Optical
Remote Sensing Images [193.77450545067967]
光リモートセンシング画像(RSI)における有意物体検出のためのエンド・ツー・エンドDense Attention Fluid Network(DAFNet)を提案する。
GCA(Global Context-Aware Attention)モジュールは、長距離の意味的関係を適応的にキャプチャするために提案される。
我々は、2000枚の画像とピクセルワイドなサリエンシアノテーションを含むSODのための新しい、挑戦的な光学RSIデータセットを構築した。
論文 参考訳(メタデータ) (2020-11-26T06:14:10Z) - A Parallel Down-Up Fusion Network for Salient Object Detection in
Optical Remote Sensing Images [82.87122287748791]
光リモートセンシング画像(RSI)における有意な物体検出のための新しい並列ダウンアップフュージョンネットワーク(PDF-Net)を提案する。
In-pathの低レベル・高レベルな特徴とクロスパスの多解像度な特徴をフル活用して、多様なスケールのサルエントオブジェクトを識別し、散らかった背景を抑える。
ORSSDデータセットの実験により、提案したネットワークは定性的かつ定量的に最先端のアプローチよりも優れていることが示された。
論文 参考訳(メタデータ) (2020-10-02T05:27:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。