論文の概要: Accelerating Gradient-based Meta Learner
- arxiv url: http://arxiv.org/abs/2110.14459v1
- Date: Wed, 27 Oct 2021 14:27:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-28 16:21:15.269450
- Title: Accelerating Gradient-based Meta Learner
- Title(参考訳): 勾配に基づくメタ学習の高速化
- Authors: Varad Pimpalkhute, Amey Pandit, Mayank Mishra, Rekha Singhal
- Abstract要約: 我々は,MAML (Model Agnostic Meta Learning) などのメタ学習アルゴリズムを高速化する様々なアクセラレーション手法を提案する。
本稿では,メタ学習プロセスの高速化だけでなく,モデルの精度向上にも寄与する,クラスタ内でのトレーニングタスクの新たな方法を提案する。
- 参考スコア(独自算出の注目度): 2.1349209400003932
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Meta Learning has been in focus in recent years due to the meta-learner
model's ability to adapt well and generalize to new tasks, thus, reducing both
the time and data requirements for learning. However, a major drawback of meta
learner is that, to reach to a state from where learning new tasks becomes
feasible with less data, it requires a large number of iterations and a lot of
time. We address this issue by proposing various acceleration techniques to
speed up meta learning algorithms such as MAML (Model Agnostic Meta Learning).
We present 3.73X acceleration on a well known RNN optimizer based meta learner
proposed in literature [11]. We introduce a novel method of training tasks in
clusters, which not only accelerates the meta learning process but also
improves model accuracy performance.
Keywords: Meta learning, RNN optimizer, AGI, Performance optimization
- Abstract(参考訳): メタラーナーモデルが新しいタスクに順応し、一般化する能力のため、メタラーナーモデルが近年注目されているため、学習の時間とデータ要件の両方が削減されている。
しかし、メタ学習者の大きな欠点は、新しいタスクの学習がより少ないデータで実現可能な状態に達するためには、多くのイテレーションと多くの時間が必要になることである。
我々は,MAML(Model Agnostic Meta Learning)などのメタ学習アルゴリズムを高速化するために,様々なアクセラレーション手法を提案する。
文献に提案されているよく知られたrnnオプティマイザに基づくメタ学習者に3.73倍の加速度を与える [11]。
本稿では,メタ学習プロセスの高速化だけでなく,モデルの精度向上にも寄与する,クラスタ内でのトレーニングタスクの新たな方法を提案する。
キーワード:メタ学習、RNNオプティマイザ、AGI、パフォーマンス最適化
関連論文リスト
- Fast Adaptation with Kernel and Gradient based Meta Leaning [4.763682200721131]
モデルAメタラーニング(MAML)の内輪と外輪の両方を改善するための2つのアルゴリズムを提案する。
最初のアルゴリズムは関数空間の最適化問題を再定義し、閉形式解を用いてモデルを更新する。
外ループでは、内ループの各タスクの損失に重みを割り当てることで、第2のアルゴリズムがメタラーナーの学習を調整する。
論文 参考訳(メタデータ) (2024-11-01T07:05:03Z) - FREE: Faster and Better Data-Free Meta-Learning [77.90126669914324]
Data-Free Meta-Learning (DFML) は、トレーニング済みモデルのコレクションから、元のデータを必要としない知識を抽出することを目的としている。
i)事前訓練されたモデルからトレーニングタスクを迅速に回復するためのメタジェネレータ,(ii)新しい未知のタスクに一般化するためのメタラーナーを含む、より高速で優れたデータフリーなメタラーニングフレームワークを紹介する。
論文 参考訳(メタデータ) (2024-05-02T03:43:19Z) - Learning to Learn with Indispensable Connections [6.040904021861969]
本稿では,メタ-LTHと呼ばれるメタ-LTHと呼ばれるメタ-ラーニング手法を提案する。
本手法は,オムニグロットデータセットの分類精度を約2%向上させる。
論文 参考訳(メタデータ) (2023-04-06T04:53:13Z) - Meta-Learning with Self-Improving Momentum Target [72.98879709228981]
メタラーナーの性能を向上させるために,SiMT(Self-improving Momentum Target)を提案する。
SiMTはメタラーナーの時間アンサンブルから適応してターゲットモデルを生成する。
我々は、SiMTが幅広いメタ学習手法と組み合わせることで、大きなパフォーマンス向上をもたらすことを示す。
論文 参考訳(メタデータ) (2022-10-11T06:45:15Z) - Bootstrapped Meta-Learning [48.017607959109924]
本稿では,メタ学習者が自らを教えることによって,メタ最適化問題に挑戦するアルゴリズムを提案する。
アルゴリズムはまずメタラーナーからターゲットをブートストラップし、選択した(擬似)測度の下でそのターゲットまでの距離を最小化することでメタラーナーを最適化する。
我々は、Atari ALEベンチマークでモデルフリーエージェントの新たな最先端技術を実現し、数ショットの学習においてMAMLを改善し、我々のアプローチがいかに新しい可能性を開くかを実証する。
論文 参考訳(メタデータ) (2021-09-09T18:29:05Z) - Faster Meta Update Strategy for Noise-Robust Deep Learning [62.08964100618873]
我々は,メタグラデーションの最も高価なステップをより高速なレイヤワイズ近似に置き換えるために,新しいファMUS(Faster Meta Update Strategy)を導入する。
本手法は,同等あるいはさらに優れた一般化性能を維持しつつ,トレーニング時間の3分の2を節約できることを示す。
論文 参考訳(メタデータ) (2021-04-30T16:19:07Z) - Fast Few-Shot Classification by Few-Iteration Meta-Learning [173.32497326674775]
数ショット分類のための高速な最適化に基づくメタラーニング手法を提案する。
我々の戦略はメタ学習において学習すべき基礎学習者の目的の重要な側面を可能にする。
我々は、我々のアプローチの速度と効果を実証し、総合的な実験分析を行う。
論文 参考訳(メタデータ) (2020-10-01T15:59:31Z) - La-MAML: Look-ahead Meta Learning for Continual Learning [14.405620521842621]
オンライン連続学習のための高速最適化に基づくメタ学習アルゴリズムであるLook-ahead MAML(La-MAML)を提案する。
La-MAMLは他のリプレイベース、事前ベース、メタラーニングベースアプローチよりも優れたパフォーマンスを実現し、実世界の視覚分類ベンチマークで連続学習を行う。
論文 参考訳(メタデータ) (2020-07-27T23:07:01Z) - Unraveling Meta-Learning: Understanding Feature Representations for
Few-Shot Tasks [55.66438591090072]
メタラーニングの基礎となる力学と、メタラーニングを用いて訓練されたモデルと古典的に訓練されたモデルの違いをよりよく理解する。
数ショット分類のための標準訓練ルーチンの性能を高める正則化器を開発した。
論文 参考訳(メタデータ) (2020-02-17T03:18:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。