Entropy-based adaptive Hamiltonian Monte Carlo
- URL: http://arxiv.org/abs/2110.14625v1
- Date: Wed, 27 Oct 2021 17:52:55 GMT
- Title: Entropy-based adaptive Hamiltonian Monte Carlo
- Authors: Marcel Hirt, Michalis K. Titsias, Petros Dellaportas
- Abstract summary: Hamiltonian Monte Carlo (HMC) is a popular Markov Chain Monte Carlo (MCMC) algorithm to sample from an unnormalized probability distribution.
A leapfrog integrator is commonly used to implement HMC in practice, but its performance can be sensitive to the choice of mass matrix used.
We develop a gradient-based algorithm that allows for the adaptation of the mass matrix by encouraging the leapfrog integrator to have high acceptance rates.
- Score: 19.358300726820943
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hamiltonian Monte Carlo (HMC) is a popular Markov Chain Monte Carlo (MCMC)
algorithm to sample from an unnormalized probability distribution. A leapfrog
integrator is commonly used to implement HMC in practice, but its performance
can be sensitive to the choice of mass matrix used therein. We develop a
gradient-based algorithm that allows for the adaptation of the mass matrix by
encouraging the leapfrog integrator to have high acceptance rates while also
exploring all dimensions jointly. In contrast to previous work that adapt the
hyperparameters of HMC using some form of expected squared jumping distance,
the adaptation strategy suggested here aims to increase sampling efficiency by
maximizing an approximation of the proposal entropy. We illustrate that using
multiple gradients in the HMC proposal can be beneficial compared to a single
gradient-step in Metropolis-adjusted Langevin proposals. Empirical evidence
suggests that the adaptation method can outperform different versions of HMC
schemes by adjusting the mass matrix to the geometry of the target distribution
and by providing some control on the integration time.
Related papers
- Adaptive Fuzzy C-Means with Graph Embedding [84.47075244116782]
Fuzzy clustering algorithms can be roughly categorized into two main groups: Fuzzy C-Means (FCM) based methods and mixture model based methods.
We propose a novel FCM based clustering model that is capable of automatically learning an appropriate membership degree hyper- parameter value.
arXiv Detail & Related papers (2024-05-22T08:15:50Z) - Learning variational autoencoders via MCMC speed measures [7.688686113950604]
Variational autoencoders (VAEs) are popular likelihood-based generative models.
This work suggests an entropy-based adaptation for a short-run Metropolis-adjusted Langevin (MALA) or Hamiltonian Monte Carlo (HMC) chain.
Experiments show that this approach yields higher held-out log-likelihoods as well as improved generative metrics.
arXiv Detail & Related papers (2023-08-26T02:15:51Z) - Differentiating Metropolis-Hastings to Optimize Intractable Densities [51.16801956665228]
We develop an algorithm for automatic differentiation of Metropolis-Hastings samplers.
We apply gradient-based optimization to objectives expressed as expectations over intractable target densities.
arXiv Detail & Related papers (2023-06-13T17:56:02Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Sampling (AIS) is a popular algorithm used to estimates the intractable marginal likelihood of deep generative models.
We present a parameteric AIS process with flexible intermediary distributions and optimize the bridging distributions to use fewer number of steps for sampling.
We assess the performance of our optimized AIS for marginal likelihood estimation of deep generative models and compare it to other estimators.
arXiv Detail & Related papers (2022-09-27T07:58:25Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
Hybrid Monte Carlo is a powerful Markov Chain Monte Carlo method for sampling from complex continuous distributions.
We introduce a new approach based on augmenting Monte Carlo methods with SurVAE Flows to sample from discrete distributions.
We demonstrate the efficacy of our algorithm on a range of examples from statistics, computational physics and machine learning, and observe improvements compared to alternative algorithms.
arXiv Detail & Related papers (2021-02-04T02:21:08Z) - Accelerating MCMC algorithms through Bayesian Deep Networks [7.054093620465401]
Markov Chain Monte Carlo (MCMC) algorithms are commonly used for their versatility in sampling from complicated probability distributions.
As the dimension of the distribution gets larger, the computational costs for a satisfactory exploration of the sampling space become challenging.
We show an alternative way of performing adaptive MCMC, by using the outcome of Bayesian Neural Networks as the initial proposal for the Markov Chain.
arXiv Detail & Related papers (2020-11-29T04:29:00Z) - Plug-And-Play Learned Gaussian-mixture Approximate Message Passing [71.74028918819046]
We propose a plug-and-play compressed sensing (CS) recovery algorithm suitable for any i.i.d. source prior.
Our algorithm builds upon Borgerding's learned AMP (LAMP), yet significantly improves it by adopting a universal denoising function within the algorithm.
Numerical evaluation shows that the L-GM-AMP algorithm achieves state-of-the-art performance without any knowledge of the source prior.
arXiv Detail & Related papers (2020-11-18T16:40:45Z) - An adaptive Hessian approximated stochastic gradient MCMC method [12.93317525451798]
We present an adaptive Hessian approximated gradient MCMC method to incorporate local geometric information while sampling from the posterior.
We adopt a magnitude-based weight pruning method to enforce the sparsity of the network.
arXiv Detail & Related papers (2020-10-03T16:22:15Z) - Bayesian Sparse learning with preconditioned stochastic gradient MCMC
and its applications [5.660384137948734]
The proposed algorithm converges to the correct distribution with a controllable bias under mild conditions.
We show that the proposed algorithm canally converge to the correct distribution with a controllable bias under mild conditions.
arXiv Detail & Related papers (2020-06-29T20:57:20Z) - Improving Sampling Accuracy of Stochastic Gradient MCMC Methods via
Non-uniform Subsampling of Gradients [54.90670513852325]
We propose a non-uniform subsampling scheme to improve the sampling accuracy.
EWSG is designed so that a non-uniform gradient-MCMC method mimics the statistical behavior of a batch-gradient-MCMC method.
In our practical implementation of EWSG, the non-uniform subsampling is performed efficiently via a Metropolis-Hastings chain on the data index.
arXiv Detail & Related papers (2020-02-20T18:56:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.