A Survey of Self-Supervised and Few-Shot Object Detection
- URL: http://arxiv.org/abs/2110.14711v1
- Date: Wed, 27 Oct 2021 18:55:47 GMT
- Title: A Survey of Self-Supervised and Few-Shot Object Detection
- Authors: Gabriel Huang, Issam Laradji, David Vazquez, Simon Lacoste-Julien, Pau
Rodriguez
- Abstract summary: Self-supervised methods aim at learning representations from unlabeled data which transfer well to downstream tasks such as object detection.
Few-shot object detection is about training a model on novel (unseen) object classes with little data.
In this survey, we review and characterize the most recent approaches on few-shot and self-supervised object detection.
- Score: 19.647681501581225
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Labeling data is often expensive and time-consuming, especially for tasks
such as object detection and instance segmentation, which require dense
labeling of the image. While few-shot object detection is about training a
model on novel (unseen) object classes with little data, it still requires
prior training on many labeled examples of base (seen) classes. On the other
hand, self-supervised methods aim at learning representations from unlabeled
data which transfer well to downstream tasks such as object detection.
Combining few-shot and self-supervised object detection is a promising research
direction. In this survey, we review and characterize the most recent
approaches on few-shot and self-supervised object detection. Then, we give our
main takeaways and discuss future research directions.
Related papers
- Unsupervised learning based object detection using Contrastive Learning [6.912349403119665]
We introduce a groundbreaking method for training single-stage object detectors through unsupervised/self-supervised learning.
Our state-of-the-art approach has the potential to revolutionize the labeling process, substantially reducing the time and cost associated with manual annotation.
We pioneer the concept of intra-image contrastive learning alongside inter-image counterparts, enabling the acquisition of crucial location information.
arXiv Detail & Related papers (2024-02-21T01:44:15Z) - Generalized Few-Shot 3D Object Detection of LiDAR Point Cloud for
Autonomous Driving [91.39625612027386]
We propose a novel task, called generalized few-shot 3D object detection, where we have a large amount of training data for common (base) objects, but only a few data for rare (novel) classes.
Specifically, we analyze in-depth differences between images and point clouds, and then present a practical principle for the few-shot setting in the 3D LiDAR dataset.
To solve this task, we propose an incremental fine-tuning method to extend existing 3D detection models to recognize both common and rare objects.
arXiv Detail & Related papers (2023-02-08T07:11:36Z) - Incremental-DETR: Incremental Few-Shot Object Detection via
Self-Supervised Learning [60.64535309016623]
We propose the Incremental-DETR that does incremental few-shot object detection via fine-tuning and self-supervised learning on the DETR object detector.
To alleviate severe over-fitting with few novel class data, we first fine-tune the class-specific components of DETR with self-supervision.
We further introduce a incremental few-shot fine-tuning strategy with knowledge distillation on the class-specific components of DETR to encourage the network in detecting novel classes without catastrophic forgetting.
arXiv Detail & Related papers (2022-05-09T05:08:08Z) - Few-Shot Object Detection: A Survey [4.266990593059534]
Few-shot object detection aims to learn from few object instances of new categories in the target domain.
We categorize approaches according to their training scheme and architectural layout.
We introduce commonly used datasets and their evaluation protocols and analyze reported benchmark results.
arXiv Detail & Related papers (2021-12-22T07:08:53Z) - A Comparative Review of Recent Few-Shot Object Detection Algorithms [0.0]
Few-shot object detection, learning to adapt to the novel classes with a few labeled data, is an imperative and long-lasting problem.
Recent studies have explored how to use implicit cues in extra datasets without target-domain supervision to help few-shot detectors refine robust task notions.
arXiv Detail & Related papers (2021-10-30T07:57:11Z) - Discovery-and-Selection: Towards Optimal Multiple Instance Learning for
Weakly Supervised Object Detection [86.86602297364826]
We propose a discoveryand-selection approach fused with multiple instance learning (DS-MIL)
Our proposed DS-MIL approach can consistently improve the baselines, reporting state-of-the-art performance.
arXiv Detail & Related papers (2021-10-18T07:06:57Z) - Unsupervised Domain Adaption of Object Detectors: A Survey [87.08473838767235]
Recent advances in deep learning have led to the development of accurate and efficient models for various computer vision applications.
Learning highly accurate models relies on the availability of datasets with a large number of annotated images.
Due to this, model performance drops drastically when evaluated on label-scarce datasets having visually distinct images.
arXiv Detail & Related papers (2021-05-27T23:34:06Z) - Few-Cost Salient Object Detection with Adversarial-Paced Learning [95.0220555274653]
This paper proposes to learn the effective salient object detection model based on the manual annotation on a few training images only.
We name this task as the few-cost salient object detection and propose an adversarial-paced learning (APL)-based framework to facilitate the few-cost learning scenario.
arXiv Detail & Related papers (2021-04-05T14:15:49Z) - Class-agnostic Object Detection [16.97782147401037]
We propose class-agnostic object detection as a new problem that focuses on detecting objects irrespective of their object-classes.
Specifically, the goal is to predict bounding boxes for all objects in an image but not their object-classes.
We propose training and evaluation protocols for benchmarking class-agnostic detectors to advance future research in this domain.
arXiv Detail & Related papers (2020-11-28T19:22:38Z) - Closing the Generalization Gap in One-Shot Object Detection [92.82028853413516]
We show that the key to strong few-shot detection models may not lie in sophisticated metric learning approaches, but instead in scaling the number of categories.
Future data annotation efforts should therefore focus on wider datasets and annotate a larger number of categories.
arXiv Detail & Related papers (2020-11-09T09:31:17Z) - Few-shot Object Detection with Self-adaptive Attention Network for
Remote Sensing Images [11.938537194408669]
We propose a few-shot object detector which is designed for detecting novel objects provided with only a few examples.
In order to fit the object detection settings, our proposed few-shot detector concentrates on the relations that lie in the level of objects instead of the full image.
The experiments demonstrate the effectiveness of the proposed method in few-shot scenes.
arXiv Detail & Related papers (2020-09-26T13:44:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.