Unsupervised learning based object detection using Contrastive Learning
- URL: http://arxiv.org/abs/2402.13465v1
- Date: Wed, 21 Feb 2024 01:44:15 GMT
- Title: Unsupervised learning based object detection using Contrastive Learning
- Authors: Chandan Kumar, Jansel Herrera-Gerena, John Just, Matthew Darr, Ali
Jannesari
- Abstract summary: We introduce a groundbreaking method for training single-stage object detectors through unsupervised/self-supervised learning.
Our state-of-the-art approach has the potential to revolutionize the labeling process, substantially reducing the time and cost associated with manual annotation.
We pioneer the concept of intra-image contrastive learning alongside inter-image counterparts, enabling the acquisition of crucial location information.
- Score: 6.912349403119665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training image-based object detectors presents formidable challenges, as it
entails not only the complexities of object detection but also the added
intricacies of precisely localizing objects within potentially diverse and
noisy environments. However, the collection of imagery itself can often be
straightforward; for instance, cameras mounted in vehicles can effortlessly
capture vast amounts of data in various real-world scenarios. In light of this,
we introduce a groundbreaking method for training single-stage object detectors
through unsupervised/self-supervised learning.
Our state-of-the-art approach has the potential to revolutionize the labeling
process, substantially reducing the time and cost associated with manual
annotation. Furthermore, it paves the way for previously unattainable research
opportunities, particularly for large, diverse, and challenging datasets
lacking extensive labels.
In contrast to prevalent unsupervised learning methods that primarily target
classification tasks, our approach takes on the unique challenge of object
detection. We pioneer the concept of intra-image contrastive learning alongside
inter-image counterparts, enabling the acquisition of crucial location
information essential for object detection. The method adeptly learns and
represents this location information, yielding informative heatmaps. Our
results showcase an outstanding accuracy of \textbf{89.2\%}, marking a
significant breakthrough of approximately \textbf{15x} over random
initialization in the realm of unsupervised object detection within the field
of computer vision.
Related papers
- Interactive Masked Image Modeling for Multimodal Object Detection in Remote Sensing [2.0528748158119434]
multimodal learning can be used to integrate features from different data modalities, thereby improving detection accuracy.
In this paper, we propose to use Masked Image Modeling (MIM) as a pre-training technique, leveraging self-supervised learning on unlabeled data.
To address this, we propose a new interactive MIM method that can establish interactions between different tokens, which is particularly beneficial for object detection in remote sensing.
arXiv Detail & Related papers (2024-09-13T14:50:50Z) - PEEKABOO: Hiding parts of an image for unsupervised object localization [7.161489957025654]
Localizing objects in an unsupervised manner poses significant challenges due to the absence of key visual information.
We propose a single-stage learning framework, dubbed PEEKABOO, for unsupervised object localization.
The key idea is to selectively hide parts of an image and leverage the remaining image information to infer the location of objects without explicit supervision.
arXiv Detail & Related papers (2024-07-24T20:35:20Z) - Towards Self-Supervised Learning of Global and Object-Centric
Representations [4.36572039512405]
We discuss key aspects of learning structured object-centric representations with self-supervision.
We validate our insights through several experiments on the CLEVR dataset.
arXiv Detail & Related papers (2022-03-11T15:18:47Z) - Robust Region Feature Synthesizer for Zero-Shot Object Detection [87.79902339984142]
We build a novel zero-shot object detection framework that contains an Intra-class Semantic Diverging component and an Inter-class Structure Preserving component.
It is the first study to carry out zero-shot object detection in remote sensing imagery.
arXiv Detail & Related papers (2022-01-01T03:09:15Z) - Contrastive Object Detection Using Knowledge Graph Embeddings [72.17159795485915]
We compare the error statistics of the class embeddings learned from a one-hot approach with semantically structured embeddings from natural language processing or knowledge graphs.
We propose a knowledge-embedded design for keypoint-based and transformer-based object detection architectures.
arXiv Detail & Related papers (2021-12-21T17:10:21Z) - A Survey of Self-Supervised and Few-Shot Object Detection [19.647681501581225]
Self-supervised methods aim at learning representations from unlabeled data which transfer well to downstream tasks such as object detection.
Few-shot object detection is about training a model on novel (unseen) object classes with little data.
In this survey, we review and characterize the most recent approaches on few-shot and self-supervised object detection.
arXiv Detail & Related papers (2021-10-27T18:55:47Z) - Pretrained equivariant features improve unsupervised landmark discovery [69.02115180674885]
We formulate a two-step unsupervised approach that overcomes this challenge by first learning powerful pixel-based features.
Our method produces state-of-the-art results in several challenging landmark detection datasets.
arXiv Detail & Related papers (2021-04-07T05:42:11Z) - Few-Cost Salient Object Detection with Adversarial-Paced Learning [95.0220555274653]
This paper proposes to learn the effective salient object detection model based on the manual annotation on a few training images only.
We name this task as the few-cost salient object detection and propose an adversarial-paced learning (APL)-based framework to facilitate the few-cost learning scenario.
arXiv Detail & Related papers (2021-04-05T14:15:49Z) - Data Augmentation for Object Detection via Differentiable Neural
Rendering [71.00447761415388]
It is challenging to train a robust object detector when annotated data is scarce.
Existing approaches to tackle this problem include semi-supervised learning that interpolates labeled data from unlabeled data.
We introduce an offline data augmentation method for object detection, which semantically interpolates the training data with novel views.
arXiv Detail & Related papers (2021-03-04T06:31:06Z) - Self-supervised Segmentation via Background Inpainting [96.10971980098196]
We introduce a self-supervised detection and segmentation approach that can work with single images captured by a potentially moving camera.
We exploit a self-supervised loss function that we exploit to train a proposal-based segmentation network.
We apply our method to human detection and segmentation in images that visually depart from those of standard benchmarks and outperform existing self-supervised methods.
arXiv Detail & Related papers (2020-11-11T08:34:40Z) - Co-training for On-board Deep Object Detection [0.0]
Best performing deep vision-based object detectors are trained in a supervised manner by relying on human-labeled bounding boxes.
Co-training is a semi-supervised learning method for self-labeling objects in unlabeled images.
We show how co-training is a paradigm worth to pursue for alleviating object labeling, working both alone and together with task-agnostic domain adaptation.
arXiv Detail & Related papers (2020-08-12T19:08:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.