Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on
Data Contamination
- URL: http://arxiv.org/abs/2110.14825v1
- Date: Thu, 28 Oct 2021 00:23:01 GMT
- Title: Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on
Data Contamination
- Authors: Jongmin Yu, Hyeontaek Oh, Minkyung Kim, and Junsik Kim
- Abstract summary: Normality-Calibrated Autoencoder (NCAE) can boost anomaly detection performance on contaminated datasets.
NCAE adversarially generates high confident normal samples from a latent space having low entropy.
- Score: 4.547161155818913
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we propose Normality-Calibrated Autoencoder (NCAE), which can
boost anomaly detection performance on the contaminated datasets without any
prior information or explicit abnormal samples in the training phase. The NCAE
adversarially generates high confident normal samples from a latent space
having low entropy and leverages them to predict abnormal samples in a training
dataset. NCAE is trained to minimise reconstruction errors in uncontaminated
samples and maximise reconstruction errors in contaminated samples. The
experimental results demonstrate that our method outperforms shallow, hybrid,
and deep methods for unsupervised anomaly detection and achieves comparable
performance compared with semi-supervised methods using labelled anomaly
samples in the training phase. The source code is publicly available on
`https://github.com/andreYoo/NCAE_UAD.git'.
Related papers
- Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection [88.34095233600719]
FAPrompt is a novel framework designed to learn Fine-grained Abnormality Prompts for more accurate ZSAD.
It substantially outperforms state-of-the-art methods by at least 3%-5% AUC/AP in both image- and pixel-level ZSAD tasks.
arXiv Detail & Related papers (2024-10-14T08:41:31Z) - Leveraging Latent Diffusion Models for Training-Free In-Distribution Data Augmentation for Surface Defect Detection [9.784793380119806]
We introduce DIAG, a training-free Diffusion-based In-distribution Anomaly Generation pipeline for data augmentation.
Unlike conventional image generation techniques, we implement a human-in-the-loop pipeline, where domain experts provide multimodal guidance to the model.
We demonstrate the efficacy and versatility of DIAG with respect to state-of-the-art data augmentation approaches on the challenging KSDD2 dataset.
arXiv Detail & Related papers (2024-07-04T14:28:52Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - RoSAS: Deep Semi-Supervised Anomaly Detection with
Contamination-Resilient Continuous Supervision [21.393509817509464]
This paper proposes a novel semi-supervised anomaly detection method, which devises textitcontamination-resilient continuous supervisory signals
Our approach significantly outperforms state-of-the-art competitors by 20%-30% in AUC-PR.
arXiv Detail & Related papers (2023-07-25T04:04:49Z) - Hierarchical Semi-Supervised Contrastive Learning for
Contamination-Resistant Anomaly Detection [81.07346419422605]
Anomaly detection aims at identifying deviant samples from the normal data distribution.
Contrastive learning has provided a successful way to sample representation that enables effective discrimination on anomalies.
We propose a novel hierarchical semi-supervised contrastive learning framework, for contamination-resistant anomaly detection.
arXiv Detail & Related papers (2022-07-24T18:49:26Z) - Augment to Detect Anomalies with Continuous Labelling [10.646747658653785]
Anomaly detection is to recognize samples that differ in some respect from the training observations.
Recent state-of-the-art deep learning-based anomaly detection methods suffer from high computational cost, complexity, unstable training procedures, and non-trivial implementation.
We leverage a simple learning procedure that trains a lightweight convolutional neural network, reaching state-of-the-art performance in anomaly detection.
arXiv Detail & Related papers (2022-07-03T20:11:51Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - DASVDD: Deep Autoencoding Support Vector Data Descriptor for Anomaly
Detection [9.19194451963411]
Semi-supervised anomaly detection aims to detect anomalies from normal samples using a model that is trained on normal data.
We propose a method, DASVDD, that jointly learns the parameters of an autoencoder while minimizing the volume of an enclosing hyper-sphere on its latent representation.
arXiv Detail & Related papers (2021-06-09T21:57:41Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z) - Deep Weakly-supervised Anomaly Detection [118.55172352231381]
Pairwise Relation prediction Network (PReNet) learns pairwise relation features and anomaly scores.
PReNet can detect any seen/unseen abnormalities that fit the learned pairwise abnormal patterns.
Empirical results on 12 real-world datasets show that PReNet significantly outperforms nine competing methods in detecting seen and unseen anomalies.
arXiv Detail & Related papers (2019-10-30T00:40:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.