Strengthening Anomaly Awareness
- URL: http://arxiv.org/abs/2504.11520v1
- Date: Tue, 15 Apr 2025 16:52:22 GMT
- Title: Strengthening Anomaly Awareness
- Authors: Adam Banda, Charanjit K. Khosa, Veronica Sanz,
- Abstract summary: We present a refined version of the Anomaly Awareness framework for enhancing unsupervised anomaly detection.<n>Our approach introduces minimal supervision into Variational Autoencoders (VAEs) through a two-stage training strategy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present a refined version of the Anomaly Awareness framework for enhancing unsupervised anomaly detection. Our approach introduces minimal supervision into Variational Autoencoders (VAEs) through a two-stage training strategy: the model is first trained in an unsupervised manner on background data, and then fine-tuned using a small sample of labeled anomalies to encourage larger reconstruction errors for anomalous samples. We validate the method across diverse domains, including the MNIST dataset with synthetic anomalies, network intrusion data from the CICIDS benchmark, collider physics data from the LHCO2020 dataset, and simulated events from the Standard Model Effective Field Theory (SMEFT). The latter provides a realistic example of subtle kinematic deviations in Higgs boson production. In all cases, the model demonstrates improved sensitivity to unseen anomalies, achieving better separation between normal and anomalous samples. These results indicate that even limited anomaly information, when incorporated through targeted fine-tuning, can substantially improve the generalization and performance of unsupervised models for anomaly detection.
Related papers
- GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection [60.78684630040313]
Diffusion models tend to reconstruct normal counterparts of test images with certain noises added.
From the global perspective, the difficulty of reconstructing images with different anomalies is uneven.
We propose a global and local adaptive diffusion model (abbreviated to GLAD) for unsupervised anomaly detection.
arXiv Detail & Related papers (2024-06-11T17:27:23Z) - Unseen Visual Anomaly Generation [13.456240733175767]
Anomaly Anything (AnomalyAny) is a novel framework that generates diverse and realistic unseen anomalies.<n>By conditioning on a single normal sample during test time, AnomalyAny is able to generate unseen anomalies for arbitrary object types with text descriptions.
arXiv Detail & Related papers (2024-06-03T07:58:09Z) - MAPL: Memory Augmentation and Pseudo-Labeling for Semi-Supervised Anomaly Detection [0.0]
A new meth-odology for detecting surface defects in in-dustrial settings is introduced, referred to as Memory Augmentation and Pseudo-Labeling(MAPL)
The methodology first in-troduces an anomaly simulation strategy, which significantly improves the model's ability to recognize rare or unknown anom-aly types.
An end-to-end learning framework is employed by MAPL to identify the abnormal regions directly from the input data.
arXiv Detail & Related papers (2024-05-10T02:26:35Z) - Toward Generalist Anomaly Detection via In-context Residual Learning with Few-shot Sample Prompts [25.629973843455495]
Generalist Anomaly Detection (GAD) aims to train one single detection model that can generalize to detect anomalies in diverse datasets from different application domains without further training on the target data.
We introduce a novel approach that learns an in-context residual learning model for GAD, termed InCTRL.
InCTRL is the best performer and significantly outperforms state-of-the-art competing methods.
arXiv Detail & Related papers (2024-03-11T08:07:46Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Generating and Reweighting Dense Contrastive Patterns for Unsupervised
Anomaly Detection [59.34318192698142]
We introduce a prior-less anomaly generation paradigm and develop an innovative unsupervised anomaly detection framework named GRAD.
PatchDiff effectively expose various types of anomaly patterns.
experiments on both MVTec AD and MVTec LOCO datasets also support the aforementioned observation.
arXiv Detail & Related papers (2023-12-26T07:08:06Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
Anomaly inspection plays an important role in industrial manufacture.
Existing anomaly inspection methods are limited in their performance due to insufficient anomaly data.
We propose AnomalyDiffusion, a novel diffusion-based few-shot anomaly generation model.
arXiv Detail & Related papers (2023-12-10T05:13:40Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - RoSAS: Deep Semi-Supervised Anomaly Detection with
Contamination-Resilient Continuous Supervision [21.393509817509464]
This paper proposes a novel semi-supervised anomaly detection method, which devises textitcontamination-resilient continuous supervisory signals
Our approach significantly outperforms state-of-the-art competitors by 20%-30% in AUC-PR.
arXiv Detail & Related papers (2023-07-25T04:04:49Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on
Data Contamination [4.547161155818913]
Normality-Calibrated Autoencoder (NCAE) can boost anomaly detection performance on contaminated datasets.
NCAE adversarially generates high confident normal samples from a latent space having low entropy.
arXiv Detail & Related papers (2021-10-28T00:23:01Z) - Enhancing Unsupervised Anomaly Detection with Score-Guided Network [13.127091975959358]
Anomaly detection plays a crucial role in various real-world applications, including healthcare and finance systems.
We propose a novel scoring network with a score-guided regularization to learn and enlarge the anomaly score disparities between normal and abnormal data.
We next propose a score-guided autoencoder (SG-AE), incorporating the scoring network into an autoencoder framework for anomaly detection.
arXiv Detail & Related papers (2021-09-10T06:14:53Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.