Multimode optomechanical cooling via general dark-mode control
- URL: http://arxiv.org/abs/2110.14885v3
- Date: Wed, 3 Aug 2022 05:04:56 GMT
- Title: Multimode optomechanical cooling via general dark-mode control
- Authors: Jian Huang, Deng-Gao Lai, Cheng Liu, Jin-Feng Huang, Franco Nori,
Jie-Qiao Liao
- Abstract summary: The dark-mode effect is a stubborn obstacle for ground-state cooling of degenerate mechanical modes optomechanically coupled to a common cavity-field mode.
We propose an auxiliary-cavity-mode method for simultaneous ground-state cooling of two degenerate or near-degenerate mechanical modes by breaking the dark mode.
- Score: 5.204626024588376
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The dark-mode effect is a stubborn obstacle for ground-state cooling of
multiple degenerate mechanical modes optomechanically coupled to a common
cavity-field mode. Here we propose an auxiliary-cavity-mode method for
simultaneous ground-state cooling of two degenerate or near-degenerate
mechanical modes by breaking the dark mode. We find that the introduction of
the auxiliary cavity mode not only breaks the dark-mode effect, but also
provides a new cooling channel to extract the thermal excitations stored in the
dark mode. Moreover, we study the general physical-coupling configurations for
breaking the dark mode in a generalized networkcoupled four-mode optomechanical
system consisting of two cavity modes and two mechanical modes. We find the
analytical dark-mode-breaking condition in this system. This method is general
and it can be generalized to break the dark-mode effect and to realize the
simultaneous ground-state cooling in a multiple-mechanicalmode optomechanical
system. We also demonstrate the physical mechanism behind the dark-mode
breaking by studying the breaking of dark-state effect in the N-type four-level
atomic system. Our results not only provide a general method to control various
dark-mode and dark-state effects in physics, but also present an opportunity to
the study of macroscopic quantum phenomena and applications in
multiple-mechanical-resonator systems.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Quantum field heat engine powered by phonon-photon interactions [58.720142291102135]
We present a quantum heat engine based on a cavity with two oscillating mirrors.
The engine performs an Otto cycle during which the walls and a field mode interact via a nonlinear Hamiltonian.
arXiv Detail & Related papers (2023-05-10T20:27:15Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - Non-Hermitian zero mode laser in a nanophotonic trimer [55.41644538483948]
We report on the direct observation of a lasing zero mode in a non-Hermitian three coupled nanocavity array.
We show efficient excitation for nearly equal pump power in the two extreme cavities.
The realization of zero mode lasing in large arrays of coupled nanolasers has potential applications in laser-mode engineering.
arXiv Detail & Related papers (2023-02-03T15:21:44Z) - Thermal-noise-resistant optomechanical entanglement via general
dark-mode control [2.654399717608053]
We propose an auxiliary-cavity-mode method to enhance optomechanical entanglement in a multimode optomechanical system.
By analyzing the correspondence between the optomechanical entanglement and the dark-mode effect, we find that optomechanical entanglement can be largely enhanced once the dark mode is broken.
arXiv Detail & Related papers (2022-12-04T14:33:19Z) - Simultaneous ground-state cooling of two mechanical modes of a levitated
nanoparticle [0.0]
We show the transition from 1D to 2D ground-state cooling while avoiding the effect of dark modes.
Our results lay the foundations for generating quantum-limited high orbital angular momentum states with applications in rotation sensing.
arXiv Detail & Related papers (2022-09-30T09:08:46Z) - Simultaneous ground-state cooling of multiple degenerate mechanical
modes through cross-Kerr effect [6.268909839947699]
Simultaneous ground-state cooling of multiple degenerate mechanical modes is a tough issue in optomechanical system.
We propose a universal and scalable method to break the dark mode effect of two degenerate mechanical modes by introducing the cross-Kerr (CK) nonlinearity.
arXiv Detail & Related papers (2022-08-20T09:10:59Z) - Ground-state cooling of multiple near-degenerate mechanical modes [11.869624318120842]
We propose a general and experimentally feasible approach to realize simultaneous ground-state cooling of arbitrary number of near-degenerate mechanical modes.
Multiple optical modes are employed to provide different dissipation channels that prevent complete destructive interference of the cooling pathway.
In a realistic multi-mode optomechanical system, ground-state cooling of all mechanical modes is demonstrated by sequentially introducing optical drives.
arXiv Detail & Related papers (2021-10-28T05:16:34Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Nonreciprocal ground-state cooling of multiple mechanical resonators [0.2529563359433233]
We propose a universal and reliable dark-mode-breaking method to realize the simultaneous ground-state cooling of two degenerate or nondegenerate mechanical modes.
We find an asymmetrical cooling performance for the two mechanical modes based on the nonreciprocal energy transfer mechanism.
arXiv Detail & Related papers (2020-07-29T14:10:37Z) - Parallel dark soliton pair in a bistable 2D exciton-polariton superfluid [47.187609203210705]
2D dark solitons are unstable and collapse into vortices due to snake instabilities.
We demonstrate that a pair of dark solitons can be formed in the wake of an obstacle in a polariton flow resonantly supported by a homogeneous laser beam.
arXiv Detail & Related papers (2020-03-25T13:52:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.