Non-Hermitian zero mode laser in a nanophotonic trimer
- URL: http://arxiv.org/abs/2302.01809v1
- Date: Fri, 3 Feb 2023 15:21:44 GMT
- Title: Non-Hermitian zero mode laser in a nanophotonic trimer
- Authors: Kaiwen Ji, Bruno Garbin, Melissa Hedir, Juan A. Levenson, and
Alejandro Yacomotti
- Abstract summary: We report on the direct observation of a lasing zero mode in a non-Hermitian three coupled nanocavity array.
We show efficient excitation for nearly equal pump power in the two extreme cavities.
The realization of zero mode lasing in large arrays of coupled nanolasers has potential applications in laser-mode engineering.
- Score: 55.41644538483948
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Symmetry-protected zero modes in arrays of coupled optical elements have
attracted considerable attention because they are expected to be robust against
coupling disorders. In the Hermitian limit, zero modes are dark ones, i.e. the
intensity in one sublattice vanishes; yet, in a non-Hermitian counterpart, zero
modes can be bright and feature {\pi}/2 phase difference between sublattices.
In this work, we report on the direct observation of a lasing zero mode in a
non-Hermitian three coupled nanocavity array. We show efficient excitation for
nearly equal pump power in the two extreme cavities. Furthermore, its
efficiency can be dynamically controlled by pumping the center cavity. The
realization of zero mode lasing in large arrays of coupled nanolasers has
potential applications in laser-mode engineering and it opens up promising
avenues in optical computing.
Related papers
- Entangling two exciton modes using exciton optomechanics [4.561414434532408]
We propose to entangle two exciton modes in an exciton-optomechanics system.
The protocol is within reach of current technology and may become a promising approach for preparing excitonic entanglement.
arXiv Detail & Related papers (2024-02-05T04:07:20Z) - Engineering cubic quantum nondemolition Hamiltonian with mesoscopic
optical parametric interactions [0.0]
We show that strongly squeezed fundamental and second harmonic fields propagating in a $chi(2)$ nonlinear medium evolve under a cubic QND Hamiltonian.
Our scheme can be highly tolerant against overall detection inefficiency with an auxiliary high-gain phase-sensitive optical amplifier.
arXiv Detail & Related papers (2023-05-05T03:23:36Z) - High-efficiency entanglement of microwave fields in cavity
opto-magnomechanical systems [5.895527084596321]
We show a scheme to realize high-efficiency entanglement of two microwave fields in a dual opto-magnomechanical system.
The proposed scheme provides a new mechanism to generate entangled microwave fields via magnons.
arXiv Detail & Related papers (2023-01-07T08:38:23Z) - Experimental realization of deterministic and selective photon addition
in a bosonic mode assisted by an ancillary qubit [50.591267188664666]
Bosonic quantum error correcting codes are primarily designed to protect against single-photon loss.
Error correction requires a recovery operation that maps the error states -- which have opposite parity -- back onto the code states.
Here, we realize a collection of photon-number-selective, simultaneous photon addition operations on a bosonic mode.
arXiv Detail & Related papers (2022-12-22T23:32:21Z) - Compact localized boundary states in a quasi-1D electronic
diamond-necklace chain [0.0]
We show that a quasi-1D diamond-necklace chain exhibits a completely unforeseen type of robust boundary state.
We theoretically engineer a lattice geometry to access this mode, and experimentally realize it in an electronic quantum simulator setup.
arXiv Detail & Related papers (2022-01-06T11:05:11Z) - On-chip single-photon subtraction by individual silicon vacancy centers
in a laser-written diamond waveguide [48.7576911714538]
Laser-written diamond photonics offers three-dimensional fabrication capabilities and large mode-field diameters matched to fiber optic technology.
To realize large cooperativities, we combine excitation of single shallow-implanted silicon vacancy centers via large numerical aperture optics.
We demonstrate single-emitter extinction measurements with a cooperativity of 0.153 and a beta factor of 13% yielding 15.3% as lower bound for the quantum efficiency of a single emitter.
arXiv Detail & Related papers (2021-11-02T16:01:15Z) - Direct observation of zero modes in a non-Hermitian nanocavity array [48.7576911714538]
We report on the direct observation of zero modes in a non-Hermitian three coupled photonic crystal nanocavity array containing quantum wells.
Unlike the Hermitian counterparts, the non-Hermitian zero modes can only be observed for small sublattice detuning.
arXiv Detail & Related papers (2021-08-22T09:19:59Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.