Generalized Proximal Policy Optimization with Sample Reuse
- URL: http://arxiv.org/abs/2111.00072v1
- Date: Fri, 29 Oct 2021 20:22:31 GMT
- Title: Generalized Proximal Policy Optimization with Sample Reuse
- Authors: James Queeney, Ioannis Ch. Paschalidis, Christos G. Cassandras
- Abstract summary: We combine the theoretically supported stability benefits of on-policy algorithms with the sample efficiency of off-policy algorithms.
We develop policy improvement guarantees that are suitable for the off-policy setting, and connect these bounds to the clipping mechanism used in Proximal Policy Optimization.
This motivates an off-policy version of the popular algorithm that we call Generalized Proximal Policy Optimization with Sample Reuse.
- Score: 8.325359814939517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In real-world decision making tasks, it is critical for data-driven
reinforcement learning methods to be both stable and sample efficient.
On-policy methods typically generate reliable policy improvement throughout
training, while off-policy methods make more efficient use of data through
sample reuse. In this work, we combine the theoretically supported stability
benefits of on-policy algorithms with the sample efficiency of off-policy
algorithms. We develop policy improvement guarantees that are suitable for the
off-policy setting, and connect these bounds to the clipping mechanism used in
Proximal Policy Optimization. This motivates an off-policy version of the
popular algorithm that we call Generalized Proximal Policy Optimization with
Sample Reuse. We demonstrate both theoretically and empirically that our
algorithm delivers improved performance by effectively balancing the competing
goals of stability and sample efficiency.
Related papers
- Acceleration in Policy Optimization [50.323182853069184]
We work towards a unifying paradigm for accelerating policy optimization methods in reinforcement learning (RL) by integrating foresight in the policy improvement step via optimistic and adaptive updates.
We define optimism as predictive modelling of the future behavior of a policy, and adaptivity as taking immediate and anticipatory corrective actions to mitigate errors from overshooting predictions or delayed responses to change.
We design an optimistic policy gradient algorithm, adaptive via meta-gradient learning, and empirically highlight several design choices pertaining to acceleration, in an illustrative task.
arXiv Detail & Related papers (2023-06-18T15:50:57Z) - Iteratively Refined Behavior Regularization for Offline Reinforcement
Learning [57.10922880400715]
In this paper, we propose a new algorithm that substantially enhances behavior-regularization based on conservative policy iteration.
By iteratively refining the reference policy used for behavior regularization, conservative policy update guarantees gradually improvement.
Experimental results on the D4RL benchmark indicate that our method outperforms previous state-of-the-art baselines in most tasks.
arXiv Detail & Related papers (2023-06-09T07:46:24Z) - Local Optimization Achieves Global Optimality in Multi-Agent
Reinforcement Learning [139.53668999720605]
We present a multi-agent PPO algorithm in which the local policy of each agent is updated similarly to vanilla PPO.
We prove that with standard regularity conditions on the Markov game and problem-dependent quantities, our algorithm converges to the globally optimal policy at a sublinear rate.
arXiv Detail & Related papers (2023-05-08T16:20:03Z) - Distillation Policy Optimization [5.439020425819001]
We introduce an actor-critic learning framework that harmonizes two data sources for both evaluation and control.
This framework incorporates variance reduction mechanisms, including a unified advantage estimator (UAE) and a residual baseline.
Our results showcase substantial enhancements in sample efficiency for on-policy algorithms, effectively bridging the gap to the off-policy approaches.
arXiv Detail & Related papers (2023-02-01T15:59:57Z) - A Policy Optimization Method Towards Optimal-time Stability [15.722871779526526]
We propose a policy optimization technique incorporating sampling-based Lyapunov stability.
Our approach enables the system's state to reach an equilibrium point within an optimal time.
arXiv Detail & Related papers (2023-01-02T04:19:56Z) - Generalized Policy Improvement Algorithms with Theoretically Supported Sample Reuse [15.134707391442236]
We develop a new class of model-free deep reinforcement learning algorithms for data-driven, learning-based control.
Our Generalized Policy Improvement algorithms combine the policy improvement guarantees of on-policy methods with the efficiency of sample reuse.
arXiv Detail & Related papers (2022-06-28T02:56:12Z) - Bellman Residual Orthogonalization for Offline Reinforcement Learning [53.17258888552998]
We introduce a new reinforcement learning principle that approximates the Bellman equations by enforcing their validity only along a test function space.
We exploit this principle to derive confidence intervals for off-policy evaluation, as well as to optimize over policies within a prescribed policy class.
arXiv Detail & Related papers (2022-03-24T01:04:17Z) - Variance-Reduced Off-Policy Memory-Efficient Policy Search [61.23789485979057]
Off-policy policy optimization is a challenging problem in reinforcement learning.
Off-policy algorithms are memory-efficient and capable of learning from off-policy samples.
arXiv Detail & Related papers (2020-09-14T16:22:46Z) - Optimistic Distributionally Robust Policy Optimization [2.345728642535161]
Trust Region Policy Optimization (TRPO) and Proximal Policy Optimization (PPO) are prone to converge to a sub-optimal solution as they limit policy representation to a particular parametric distribution class.
We develop an innovative Optimistic Distributionally Robust Policy Optimization (ODRO) algorithm to solve the trust region constrained optimization problem without parameterizing the policies.
Our algorithm improves TRPO and PPO with a higher sample efficiency and a better performance of the final policy while attaining the learning stability.
arXiv Detail & Related papers (2020-06-14T06:36:18Z) - Stable Policy Optimization via Off-Policy Divergence Regularization [50.98542111236381]
Trust Region Policy Optimization (TRPO) and Proximal Policy Optimization (PPO) are among the most successful policy gradient approaches in deep reinforcement learning (RL)
We propose a new algorithm which stabilizes the policy improvement through a proximity term that constrains the discounted state-action visitation distribution induced by consecutive policies to be close to one another.
Our proposed method can have a beneficial effect on stability and improve final performance in benchmark high-dimensional control tasks.
arXiv Detail & Related papers (2020-03-09T13:05:47Z) - A Nonparametric Off-Policy Policy Gradient [32.35604597324448]
Reinforcement learning (RL) algorithms still suffer from high sample complexity despite outstanding recent successes.
We build on the general sample efficiency of off-policy algorithms.
We show that our approach has better sample efficiency than state-of-the-art policy gradient methods.
arXiv Detail & Related papers (2020-01-08T10:13:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.