RL-finetuning LLMs from on- and off-policy data with a single algorithm
- URL: http://arxiv.org/abs/2503.19612v2
- Date: Fri, 28 Mar 2025 18:02:54 GMT
- Title: RL-finetuning LLMs from on- and off-policy data with a single algorithm
- Authors: Yunhao Tang, Taco Cohen, David W. Zhang, Michal Valko, Rémi Munos,
- Abstract summary: We introduce a novel reinforcement learning algorithm (AGRO) for fine-tuning large-language models.<n>AGRO leverages the concept of generation consistency, which states that the optimal policy satisfies the notion of consistency across any possible generation of the model.<n>We derive algorithms that find optimal solutions via the sample-based policy gradient and provide theoretical guarantees on their convergence.
- Score: 53.70731390624718
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel reinforcement learning algorithm (AGRO, for Any-Generation Reward Optimization) for fine-tuning large-language models. AGRO leverages the concept of generation consistency, which states that the optimal policy satisfies the notion of consistency across any possible generation of the model. We derive algorithms that find optimal solutions via the sample-based policy gradient and provide theoretical guarantees on their convergence. Our experiments demonstrate the effectiveness of AGRO in both on-policy and off-policy settings, showing improved performance on the mathematical reasoning dataset over baseline algorithms.
Related papers
- Robust Reinforcement Learning from Human Feedback for Large Language Models Fine-Tuning [3.30671592417223]
Reinforcement learning from human feedback (RLHF) has emerged as a key technique for aligning the output of large language models with human preferences.
Most existing RLHF algorithms use the Bradley-Terry model, which relies on assumptions about human preferences that may not reflect the complexity and variability of real-world judgments.
We propose a robust algorithm to enhance the performance of existing approaches under such reward model misspecifications.
arXiv Detail & Related papers (2025-04-03T16:16:35Z) - e-COP : Episodic Constrained Optimization of Policies [12.854752753529151]
We present the first policy optimization algorithm for constrained Reinforcement Learning (RL) in episodic (finite horizon) settings.<n>We show that our algorithm has similar or better performance than SoTA (non-episodic) algorithms adapted for the episodic setting.
arXiv Detail & Related papers (2024-06-13T20:12:09Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.<n>To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.<n>Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - Towards Efficient Exact Optimization of Language Model Alignment [93.39181634597877]
Direct preference optimization (DPO) was proposed to directly optimize the policy from preference data.
We show that DPO derived based on the optimal solution of problem leads to a compromised mean-seeking approximation of the optimal solution in practice.
We propose efficient exact optimization (EXO) of the alignment objective.
arXiv Detail & Related papers (2024-02-01T18:51:54Z) - Acceleration in Policy Optimization [50.323182853069184]
We work towards a unifying paradigm for accelerating policy optimization methods in reinforcement learning (RL) by integrating foresight in the policy improvement step via optimistic and adaptive updates.
We define optimism as predictive modelling of the future behavior of a policy, and adaptivity as taking immediate and anticipatory corrective actions to mitigate errors from overshooting predictions or delayed responses to change.
We design an optimistic policy gradient algorithm, adaptive via meta-gradient learning, and empirically highlight several design choices pertaining to acceleration, in an illustrative task.
arXiv Detail & Related papers (2023-06-18T15:50:57Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Generalized Policy Improvement Algorithms with Theoretically Supported Sample Reuse [15.134707391442236]
We develop a new class of model-free deep reinforcement learning algorithms for data-driven, learning-based control.
Our Generalized Policy Improvement algorithms combine the policy improvement guarantees of on-policy methods with the efficiency of sample reuse.
arXiv Detail & Related papers (2022-06-28T02:56:12Z) - COMBO: Conservative Offline Model-Based Policy Optimization [120.55713363569845]
Uncertainty estimation with complex models, such as deep neural networks, can be difficult and unreliable.
We develop a new model-based offline RL algorithm, COMBO, that regularizes the value function on out-of-support state-actions.
We find that COMBO consistently performs as well or better as compared to prior offline model-free and model-based methods.
arXiv Detail & Related papers (2021-02-16T18:50:32Z) - Approximate Midpoint Policy Iteration for Linear Quadratic Control [1.0312968200748118]
We present a midpoint policy iteration algorithm to solve linear quadratic optimal control problems in both model-based and model-free settings.
We show that in the model-based setting it achieves cubic convergence, which is superior to standard policy iteration and policy algorithms that achieve quadratic and linear convergence.
arXiv Detail & Related papers (2020-11-28T20:22:10Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.