Predicting Atlantic Multidecadal Variability
- URL: http://arxiv.org/abs/2111.00124v1
- Date: Fri, 29 Oct 2021 23:56:24 GMT
- Title: Predicting Atlantic Multidecadal Variability
- Authors: Glenn Liu, Peidong Wang, Matthew Beveridge, Young-Oh Kwon, Iddo Drori
- Abstract summary: Atlantic Multidecadal Variability describes variations of North Atlantic sea surface temperature with a typical cycle of between 60 and 70 years.
This work tests multiple machine learning models to improve the state of AMV prediction from maps of sea surface temperature, salinity, and sea level pressure in the North Atlantic region.
- Score: 7.664716161640758
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Atlantic Multidecadal Variability (AMV) describes variations of North
Atlantic sea surface temperature with a typical cycle of between 60 and 70
years. AMV strongly impacts local climate over North America and Europe,
therefore prediction of AMV, especially the extreme values, is of great
societal utility for understanding and responding to regional climate change.
This work tests multiple machine learning models to improve the state of AMV
prediction from maps of sea surface temperature, salinity, and sea level
pressure in the North Atlantic region. We use data from the Community Earth
System Model 1 Large Ensemble Project, a state-of-the-art climate model with
3,440 years of data. Our results demonstrate that all of the models we use
outperform the traditional persistence forecast baseline. Predicting the AMV is
important for identifying future extreme temperatures and precipitation, as
well as hurricane activity, in Europe and North America up to 25 years in
advance.
Related papers
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - Surrogate Modelling for Sea Ice Concentration using Lightweight Neural
Ensemble [0.3626013617212667]
We propose an adaptive surrogate modeling approach named LANE-SI.
It uses ensemble of relatively simple deep learning models with different loss functions for forecasting of sea ice concentration in the specified water area.
We achieve a 20% improvement against the state-of-the-art physics-based forecast system SEAS5 for the Kara Sea.
arXiv Detail & Related papers (2023-12-07T14:48:30Z) - Reducing Uncertainty in Sea-level Rise Prediction: A
Spatial-variability-aware Approach [4.32583920500711]
This paper proposes a zonal regression model which addresses spatial variability and model inter-dependency.
Experimental results show more reliable predictions using the weights learned via this approach on a regional scale.
arXiv Detail & Related papers (2023-10-19T02:13:38Z) - MT-IceNet -- A Spatial and Multi-Temporal Deep Learning Model for Arctic
Sea Ice Forecasting [0.31410342959104726]
We propose MT-IceNet - a UNet based spatial and multi-temporal (MT) deep learning model for forecasting Arctic sea ice concentration (SIC)
Our proposed model provides promising predictive performance for per-pixel SIC forecasting with up to 60% decrease in prediction error for a lead time of 6 months as compared to its state-of-the-art counterparts.
arXiv Detail & Related papers (2023-08-08T18:18:31Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - Data-Driven Short-Term Daily Operational Sea Ice Regional Forecasting [52.77986479871782]
Global warming made the Arctic available for marine operations and created demand for reliable operational sea ice forecasts.
In this work, we investigate the performance of the U-Net model trained in two regimes for predicting sea ice for up to the next 10 days.
We show that this deep learning model can outperform simple baselines by a significant margin and improve its quality by using additional weather data and training on multiple regions.
arXiv Detail & Related papers (2022-10-17T09:14:35Z) - A Deep Learning Model for Forecasting Global Monthly Mean Sea Surface
Temperature Anomalies [2.8411302762015844]
We have developed a deep learning time series prediction model (Unet-LSTM) based on more than 70 years (1950-2021) of ECMWF ERA5 monthly mean sea surface temperature and 2-metre air temperature data.
The model accurately predicts sea surface temperatures over a 24 month period with a root mean square error remaining below 0.75$circ$C for all predicted months.
We have also investigated the ability of the model to predict sea surface temperature anomalies in the Nino3.4 region, as well as a number of marine heatwave hot spots over the past decade.
arXiv Detail & Related papers (2022-02-21T03:11:27Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - Dynamical Landscape and Multistability of a Climate Model [64.467612647225]
We find a third intermediate stable state in one of the two climate models we consider.
The combination of our approaches allows to identify how the negative feedback of ocean heat transport and entropy production drastically change the topography of Earth's climate.
arXiv Detail & Related papers (2020-10-20T15:31:38Z) - Augmented Convolutional LSTMs for Generation of High-Resolution Climate
Change Projections [1.7503398807380832]
We present auxiliary informed-temporal neural architecture for statistical downscaling.
Current study performs daily downscaling of precipitation variable from an ESM output at 1.15 degrees (115 km) to 0.25 degrees (25 km) over the world's most climatically diversified country, India.
arXiv Detail & Related papers (2020-09-23T17:52:09Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.