Data-Driven Short-Term Daily Operational Sea Ice Regional Forecasting
- URL: http://arxiv.org/abs/2210.08877v1
- Date: Mon, 17 Oct 2022 09:14:35 GMT
- Title: Data-Driven Short-Term Daily Operational Sea Ice Regional Forecasting
- Authors: Timofey Grigoryev, Polina Verezemskaya, Mikhail Krinitskiy, Nikita
Anikin, Alexander Gavrikov, Ilya Trofimov, Nikita Balabin, Aleksei Shpilman,
Andrei Eremchenko, Sergey Gulev, Evgeny Burnaev, Vladimir Vanovskiy
- Abstract summary: Global warming made the Arctic available for marine operations and created demand for reliable operational sea ice forecasts.
In this work, we investigate the performance of the U-Net model trained in two regimes for predicting sea ice for up to the next 10 days.
We show that this deep learning model can outperform simple baselines by a significant margin and improve its quality by using additional weather data and training on multiple regions.
- Score: 52.77986479871782
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Global warming made the Arctic available for marine operations and created
demand for reliable operational sea ice forecasts to make them safe. While
ocean-ice numerical models are highly computationally intensive, relatively
lightweight ML-based methods may be more efficient in this task. Many works
have exploited different deep learning models alongside classical approaches
for predicting sea ice concentration in the Arctic. However, only a few focus
on daily operational forecasts and consider the real-time availability of data
they need for operation. In this work, we aim to close this gap and investigate
the performance of the U-Net model trained in two regimes for predicting sea
ice for up to the next 10 days. We show that this deep learning model can
outperform simple baselines by a significant margin and improve its quality by
using additional weather data and training on multiple regions, ensuring its
generalization abilities. As a practical outcome, we build a fast and flexible
tool that produces operational sea ice forecasts in the Barents Sea, the
Labrador Sea, and the Laptev Sea regions.
Related papers
- SIFM: A Foundation Model for Multi-granularity Arctic Sea Ice Forecasting [19.23074065880929]
We propose to cultivate temporal multi-granularity that naturally derived from Arctic sea ice reanalysis data.
Our Sea Ice Foundation Model ( SIFM) is designed to leverage both intra-granularity and inter-granularity information.
Our experiments show that SIFM outperforms off-the-shelf deep learning models for their specific temporal granularity.
arXiv Detail & Related papers (2024-10-16T08:52:12Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - Unicorn: U-Net for Sea Ice Forecasting with Convolutional Neural Ordinary Differential Equations [6.4020980835163765]
This paper introduces a novel deep architecture named Unicorn, designed to forecast weekly sea ice.
Our model integrates multiple time series images within its architecture to enhance its forecasting performance.
arXiv Detail & Related papers (2024-05-07T01:17:06Z) - Surrogate Modelling for Sea Ice Concentration using Lightweight Neural
Ensemble [0.3626013617212667]
We propose an adaptive surrogate modeling approach named LANE-SI.
It uses ensemble of relatively simple deep learning models with different loss functions for forecasting of sea ice concentration in the specified water area.
We achieve a 20% improvement against the state-of-the-art physics-based forecast system SEAS5 for the Kara Sea.
arXiv Detail & Related papers (2023-12-07T14:48:30Z) - MT-IceNet -- A Spatial and Multi-Temporal Deep Learning Model for Arctic
Sea Ice Forecasting [0.31410342959104726]
We propose MT-IceNet - a UNet based spatial and multi-temporal (MT) deep learning model for forecasting Arctic sea ice concentration (SIC)
Our proposed model provides promising predictive performance for per-pixel SIC forecasting with up to 60% decrease in prediction error for a lead time of 6 months as compared to its state-of-the-art counterparts.
arXiv Detail & Related papers (2023-08-08T18:18:31Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
Flood inundation forecast provides critical information for emergency planning before and during flood events.
High-resolution hydrodynamic modeling has become more accessible in recent years, however, predicting flood extents at the street and building levels in real-time is still computationally demanding.
We present a hybrid process-based and data-driven machine learning (ML) approach for flood extent and inundation depth prediction.
arXiv Detail & Related papers (2023-07-29T22:49:50Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Learning-based estimation of in-situ wind speed from underwater
acoustics [58.293528982012255]
We introduce a deep learning approach for the retrieval of wind speed time series from underwater acoustics.
Our approach bridges data assimilation and learning-based frameworks to benefit both from prior physical knowledge and computational efficiency.
arXiv Detail & Related papers (2022-08-18T15:27:40Z) - Sea Ice Forecasting using Attention-based Ensemble LSTM [4.965782577704965]
We propose an attention-based Long Short Term Memory (LSTM) ensemble method to predict monthly sea ice extent up to 1 month ahead.
Using daily and monthly satellite retrieved sea ice data from NSIDC and atmospheric and oceanic variables from ERA5 reanalysis product for 39 years, we show that our method outperforms several baseline and recently proposed deep learning models.
arXiv Detail & Related papers (2021-07-27T21:37:29Z) - SALT: Sea lice Adaptive Lattice Tracking -- An Unsupervised Approach to
Generate an Improved Ocean Model [72.3183990520267]
We propose SALT: Sea lice Adaptive Lattice Tracking approach for efficient estimation of sea lice dispersion and distribution.
Specifically, an adaptive spatial mesh is generated by merging nodes in the lattice graph of the Ocean Model based on local ocean properties.
The proposed SALT technique shows promise for enhancing proactive aquaculture management through predictive modelling of sea lice infestation pressure maps in a changing climate.
arXiv Detail & Related papers (2021-06-24T17:29:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.