Quality Estimation Using Round-trip Translation with Sentence Embeddings
- URL: http://arxiv.org/abs/2111.00554v1
- Date: Sun, 31 Oct 2021 17:51:12 GMT
- Title: Quality Estimation Using Round-trip Translation with Sentence Embeddings
- Authors: Nathan Crone, Adam Power, John Weldon
- Abstract summary: We revisit round-trip translation, proposing a system which aims to solve the previous pitfalls found with the approach.
Our method makes use of recent advances in language representation learning to more accurately gauge the similarity between the original and round-trip sentences.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Estimating the quality of machine translation systems has been an ongoing
challenge for researchers in this field. Many previous attempts at using
round-trip translation as a measure of quality have failed, and there is much
disagreement as to whether it can be a viable method of quality estimation. In
this paper, we revisit round-trip translation, proposing a system which aims to
solve the previous pitfalls found with the approach. Our method makes use of
recent advances in language representation learning to more accurately gauge
the similarity between the original and round-trip translated sentences.
Experiments show that while our approach does not reach the performance of
current state of the art methods, it may still be an effective approach for
some language pairs.
Related papers
- Multilingual Contrastive Decoding via Language-Agnostic Layers Skipping [60.458273797431836]
Decoding by contrasting layers (DoLa) is designed to improve the generation quality of large language models.
We find that this approach does not work well on non-English tasks.
Inspired by previous interpretability work on language transition during the model's forward pass, we propose an improved contrastive decoding algorithm.
arXiv Detail & Related papers (2024-07-15T15:14:01Z) - Mitigating Translationese in Low-resource Languages: The Storyboard Approach [9.676710061071809]
We propose a novel approach for data collection by leveraging storyboards to elicit more fluent and natural sentences.
Our method involves presenting native speakers with visual stimuli in the form of storyboards and collecting their descriptions without direct exposure to the source text.
We conducted a comprehensive evaluation comparing our storyboard-based approach with traditional text translation-based methods in terms of accuracy and fluency.
arXiv Detail & Related papers (2024-07-14T10:47:03Z) - Understanding and Addressing the Under-Translation Problem from the Perspective of Decoding Objective [72.83966378613238]
Under-translation and over-translation remain two challenging problems in state-of-the-art Neural Machine Translation (NMT) systems.
We conduct an in-depth analysis on the underlying cause of under-translation in NMT, providing an explanation from the perspective of decoding objective.
We propose employing the confidence of predicting End Of Sentence (EOS) as a detector for under-translation, and strengthening the confidence-based penalty to penalize candidates with a high risk of under-translation.
arXiv Detail & Related papers (2024-05-29T09:25:49Z) - BiVert: Bidirectional Vocabulary Evaluation using Relations for Machine
Translation [4.651581292181871]
We propose a bidirectional semantic-based evaluation method designed to assess the sense distance of the translation from the source text.
This approach employs the comprehensive multilingual encyclopedic dictionary BabelNet.
Factual analysis shows a strong correlation between the average evaluation scores generated by our method and the human assessments across various machine translation systems for English-German language pair.
arXiv Detail & Related papers (2024-03-06T08:02:21Z) - End-to-End Evaluation for Low-Latency Simultaneous Speech Translation [55.525125193856084]
We propose the first framework to perform and evaluate the various aspects of low-latency speech translation under realistic conditions.
This includes the segmentation of the audio as well as the run-time of the different components.
We also compare different approaches to low-latency speech translation using this framework.
arXiv Detail & Related papers (2023-08-07T09:06:20Z) - HanoiT: Enhancing Context-aware Translation via Selective Context [95.93730812799798]
Context-aware neural machine translation aims to use the document-level context to improve translation quality.
The irrelevant or trivial words may bring some noise and distract the model from learning the relationship between the current sentence and the auxiliary context.
We propose a novel end-to-end encoder-decoder model with a layer-wise selection mechanism to sift and refine the long document context.
arXiv Detail & Related papers (2023-01-17T12:07:13Z) - Rethink about the Word-level Quality Estimation for Machine Translation
from Human Judgement [57.72846454929923]
We create a benchmark dataset, emphHJQE, where the expert translators directly annotate poorly translated words.
We propose two tag correcting strategies, namely tag refinement strategy and tree-based annotation strategy, to make the TER-based artificial QE corpus closer to emphHJQE.
The results show our proposed dataset is more consistent with human judgement and also confirm the effectiveness of the proposed tag correcting strategies.
arXiv Detail & Related papers (2022-09-13T02:37:12Z) - Towards Debiasing Translation Artifacts [15.991970288297443]
We propose a novel approach to reducing translationese by extending an established bias-removal technique.
We use the Iterative Null-space Projection (INLP) algorithm, and show by measuring classification accuracy before and after debiasing, that translationese is reduced at both sentence and word level.
To the best of our knowledge, this is the first study to debias translationese as represented in latent embedding space.
arXiv Detail & Related papers (2022-05-16T21:46:51Z) - When Does Translation Require Context? A Data-driven, Multilingual
Exploration [71.43817945875433]
proper handling of discourse significantly contributes to the quality of machine translation (MT)
Recent works in context-aware MT attempt to target a small set of discourse phenomena during evaluation.
We develop the Multilingual Discourse-Aware benchmark, a series of taggers that identify and evaluate model performance on discourse phenomena.
arXiv Detail & Related papers (2021-09-15T17:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.