Mitigating Translationese in Low-resource Languages: The Storyboard Approach
- URL: http://arxiv.org/abs/2407.10152v1
- Date: Sun, 14 Jul 2024 10:47:03 GMT
- Title: Mitigating Translationese in Low-resource Languages: The Storyboard Approach
- Authors: Garry Kuwanto, Eno-Abasi E. Urua, Priscilla Amondi Amuok, Shamsuddeen Hassan Muhammad, Anuoluwapo Aremu, Verrah Otiende, Loice Emma Nanyanga, Teresiah W. Nyoike, Aniefon D. Akpan, Nsima Ab Udouboh, Idongesit Udeme Archibong, Idara Effiong Moses, Ifeoluwatayo A. Ige, Benjamin Ajibade, Olumide Benjamin Awokoya, Idris Abdulmumin, Saminu Mohammad Aliyu, Ruqayya Nasir Iro, Ibrahim Said Ahmad, Deontae Smith, Praise-EL Michaels, David Ifeoluwa Adelani, Derry Tanti Wijaya, Anietie Andy,
- Abstract summary: We propose a novel approach for data collection by leveraging storyboards to elicit more fluent and natural sentences.
Our method involves presenting native speakers with visual stimuli in the form of storyboards and collecting their descriptions without direct exposure to the source text.
We conducted a comprehensive evaluation comparing our storyboard-based approach with traditional text translation-based methods in terms of accuracy and fluency.
- Score: 9.676710061071809
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Low-resource languages often face challenges in acquiring high-quality language data due to the reliance on translation-based methods, which can introduce the translationese effect. This phenomenon results in translated sentences that lack fluency and naturalness in the target language. In this paper, we propose a novel approach for data collection by leveraging storyboards to elicit more fluent and natural sentences. Our method involves presenting native speakers with visual stimuli in the form of storyboards and collecting their descriptions without direct exposure to the source text. We conducted a comprehensive evaluation comparing our storyboard-based approach with traditional text translation-based methods in terms of accuracy and fluency. Human annotators and quantitative metrics were used to assess translation quality. The results indicate a preference for text translation in terms of accuracy, while our method demonstrates worse accuracy but better fluency in the language focused.
Related papers
- A Data Selection Approach for Enhancing Low Resource Machine Translation Using Cross-Lingual Sentence Representations [0.4499833362998489]
This study focuses on the case of English-Marathi language pairs, where existing datasets are notably noisy.
To mitigate the impact of data quality issues, we propose a data filtering approach based on cross-lingual sentence representations.
Results demonstrate a significant improvement in translation quality over the baseline post-filtering with IndicSBERT.
arXiv Detail & Related papers (2024-09-04T13:49:45Z) - Constrained Decoding for Cross-lingual Label Projection [27.567195418950966]
Cross-lingual transfer using multilingual LLMs has become a popular learning paradigm for low-resource languages with no labeled training data.
However, for NLP tasks that involve fine-grained predictions on words and phrases, the performance of zero-shot cross-lingual transfer learning lags far behind supervised fine-tuning methods.
arXiv Detail & Related papers (2024-02-05T15:57:32Z) - Optimal Transport Posterior Alignment for Cross-lingual Semantic Parsing [68.47787275021567]
Cross-lingual semantic parsing transfers parsing capability from a high-resource language (e.g., English) to low-resource languages with scarce training data.
We propose a new approach to cross-lingual semantic parsing by explicitly minimizing cross-lingual divergence between latent variables using Optimal Transport.
arXiv Detail & Related papers (2023-07-09T04:52:31Z) - The Best of Both Worlds: Combining Human and Machine Translations for
Multilingual Semantic Parsing with Active Learning [50.320178219081484]
We propose an active learning approach that exploits the strengths of both human and machine translations.
An ideal utterance selection can significantly reduce the error and bias in the translated data.
arXiv Detail & Related papers (2023-05-22T05:57:47Z) - Towards Debiasing Translation Artifacts [15.991970288297443]
We propose a novel approach to reducing translationese by extending an established bias-removal technique.
We use the Iterative Null-space Projection (INLP) algorithm, and show by measuring classification accuracy before and after debiasing, that translationese is reduced at both sentence and word level.
To the best of our knowledge, this is the first study to debias translationese as represented in latent embedding space.
arXiv Detail & Related papers (2022-05-16T21:46:51Z) - Keypoint based Sign Language Translation without Glosses [7.240731862549344]
We propose a new keypoint normalization method for performing translation based on the skeleton point of the signer.
It contributed to performance improvement by a customized normalization method depending on the body parts.
Our method can be applied to various datasets in a way that can be applied to datasets without glosses.
arXiv Detail & Related papers (2022-04-22T05:37:56Z) - On the Language Coverage Bias for Neural Machine Translation [81.81456880770762]
Language coverage bias is important for neural machine translation (NMT) because the target-original training data is not well exploited in current practice.
By carefully designing experiments, we provide comprehensive analyses of the language coverage bias in the training data.
We propose two simple and effective approaches to alleviate the language coverage bias problem.
arXiv Detail & Related papers (2021-06-07T01:55:34Z) - Self-Supervised Representations Improve End-to-End Speech Translation [57.641761472372814]
We show that self-supervised pre-trained features can consistently improve the translation performance.
Cross-lingual transfer allows to extend to a variety of languages without or with little tuning.
arXiv Detail & Related papers (2020-06-22T10:28:38Z) - On the Language Neutrality of Pre-trained Multilingual Representations [70.93503607755055]
We investigate the language-neutrality of multilingual contextual embeddings directly and with respect to lexical semantics.
Our results show that contextual embeddings are more language-neutral and, in general, more informative than aligned static word-type embeddings.
We show how to reach state-of-the-art accuracy on language identification and match the performance of statistical methods for word alignment of parallel sentences.
arXiv Detail & Related papers (2020-04-09T19:50:32Z) - On the Importance of Word Order Information in Cross-lingual Sequence
Labeling [80.65425412067464]
Cross-lingual models that fit into the word order of the source language might fail to handle target languages.
We investigate whether making models insensitive to the word order of the source language can improve the adaptation performance in target languages.
arXiv Detail & Related papers (2020-01-30T03:35:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.