論文の概要: Large-Scale Deep Learning Optimizations: A Comprehensive Survey
- arxiv url: http://arxiv.org/abs/2111.00856v2
- Date: Tue, 2 Nov 2021 03:02:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-03 11:57:27.595209
- Title: Large-Scale Deep Learning Optimizations: A Comprehensive Survey
- Title(参考訳): 大規模ディープラーニング最適化: 総合的な調査
- Authors: Xiaoxin He, Fuzhao Xue, Xiaozhe Ren, Yang You
- Abstract要約: 本研究の目的は,モデル精度とモデル効率に関する大規模深層学習の最適化に関するスケッチを提供することである。
我々は,大規模バッチ学習で発生する一般化ギャップの解答的トピックを最適化するために最もよく用いられるアルゴリズムについて検討し,通信オーバヘッドに対処し,メモリフットプリントを削減するためのSOTA戦略を概観する。
- 参考スコア(独自算出の注目度): 7.901786481399378
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning have achieved promising results on a wide spectrum of AI
applications. Larger datasets and models consistently yield better performance.
However, we generally spend longer training time on more computation and
communication. In this survey, we aim to provide a clear sketch about the
optimizations for large-scale deep learning with regard to the model accuracy
and model efficiency. We investigate algorithms that are most commonly used for
optimizing, elaborate the debatable topic of generalization gap arises in
large-batch training, and review the SOTA strategies in addressing the
communication overhead and reducing the memory footprints.
- Abstract(参考訳): ディープラーニングは、幅広いAIアプリケーションで有望な結果を得た。
より大きなデータセットとモデルにより、継続的にパフォーマンスが向上する。
しかし、私たちは一般的に、より多くの計算と通信に長いトレーニング時間を費やしています。
本研究では,モデル精度とモデル効率に関して,大規模深層学習の最適化に関する明確なスケッチを提供する。
我々は,大規模バッチ学習で発生する一般化ギャップの解答的トピックを最適化するために最もよく用いられるアルゴリズムについて検討し,通信オーバヘッドに対処し,メモリフットプリントを削減するためのSOTA戦略を概観する。
関連論文リスト
- Narrowing the Focus: Learned Optimizers for Pretrained Models [24.685918556547055]
本稿では,一連の基本作業タスクによって提供される更新方向の階層固有の線形結合を学習する手法を提案する。
画像上で評価すると、これはAdamのような従来の既成の方法と既存の一般的な学習の両方で著しく優れています。
論文 参考訳(メタデータ) (2024-08-17T23:55:19Z) - Bigger, Regularized, Optimistic: scaling for compute and sample-efficient continuous control [1.1404490220482764]
BROは、犬とヒューマノイドのタスクにおいて、ほぼ最適ポリシーを達成するためのモデルフリーのアルゴリズムである。
BROは最先端の結果を達成し、主要なモデルベースおよびモデルフリーアルゴリズムを著しく上回っている。
BROは、非常に難しい犬とヒューマノイドのタスクにおいて、ほぼ最適なポリシーを達成した最初のモデルなしアルゴリズムである。
論文 参考訳(メタデータ) (2024-05-25T09:53:25Z) - Bad Students Make Great Teachers: Active Learning Accelerates Large-Scale Visual Understanding [9.112203072394648]
パワーロースケーリングは、均一サンプリングによる大規模トレーニングが違法に遅いことを示している。
アクティブな学習手法は、最も関係のある事例に基づいて学習を優先順位付けすることで、データの効率を向上させることを目的としている。
論文 参考訳(メタデータ) (2023-12-08T19:26:13Z) - Back to Basics: A Simple Recipe for Improving Out-of-Domain Retrieval in
Dense Encoders [63.28408887247742]
得られたモデルにおいて,より優れた一般化能力を得るために,トレーニング手順の改善が可能であるかを検討する。
我々は、高密度エンコーダをトレーニングするための簡単なレシピを推奨する: LoRAのようなパラメータ効率のよいMSMARCOのトレーニング。
論文 参考訳(メタデータ) (2023-11-16T10:42:58Z) - On Efficient Training of Large-Scale Deep Learning Models: A Literature
Review [90.87691246153612]
ディープラーニングの分野は特にコンピュータビジョン(CV)、自然言語処理(NLP)、音声などにおいて大きな進歩を遂げている。
大量のデータに基づいてトレーニングされた大規模なモデルを使用することは、実用的なアプリケーションにとって大きな可能性を秘めている。
計算能力の需要が増大する中で、ディープラーニングモデルの訓練の加速技術に関する包括的な要約が期待されている。
論文 参考訳(メタデータ) (2023-04-07T11:13:23Z) - Learning to Generalize Provably in Learning to Optimize [185.71326306329678]
最適化学習(L2O)は、データ駆動アプローチによる最適化設計を自動化することで、人気が高まっている。
現在のL2O法は、少なくとも2回は一般化性能の低下に悩まされることが多い。
我々はこの2つのメトリクスを平坦性を考慮した正規化器としてL2Oフレームワークに組み込むことを提案する。
論文 参考訳(メタデータ) (2023-02-22T01:17:31Z) - Learning Large-scale Neural Fields via Context Pruned Meta-Learning [60.93679437452872]
本稿では,大規模ニューラルネットワーク学習のための最適化に基づくメタラーニング手法を提案する。
メタテスト時間における勾配再スケーリングは、非常に高品質なニューラルネットワークの学習を可能にすることを示す。
我々のフレームワークは、モデルに依存しない、直感的で、実装が容易であり、幅広い信号に対する大幅な再構成改善を示す。
論文 参考訳(メタデータ) (2023-02-01T17:32:16Z) - Deep Learning Training Procedure Augmentations [0.0]
近年のディープラーニングの進歩は、オブジェクト検出、画像分割、感情分析など、さまざまなタスクのパフォーマンスを大幅に改善している。
これは大きな成果をもたらしたが、その多くは現実世界のアプリケーションでは、ディープラーニングの他の関連する側面は無視され、不明である。
優れた性能を発揮できる一方で、収束速度、最適化ランドスケープ、対向ロバスト性に関する興味深い分析結果も提示する。
論文 参考訳(メタデータ) (2022-11-25T22:31:11Z) - Training Efficiency and Robustness in Deep Learning [2.6451769337566406]
ディープラーニングモデルのトレーニング効率と堅牢性を改善するためのアプローチについて検討する。
より情報的なトレーニングデータに基づく学習の優先順位付けは収束速度を高め、テストデータに対する一般化性能を向上させる。
トレーニングデータのサンプリングに対する冗長性を考慮した修正により、トレーニング速度が向上し、トレーニング信号の多様性を検出する効率的な方法が開発されていることを示す。
論文 参考訳(メタデータ) (2021-12-02T17:11:33Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
機械学習はデータに対する深い洞察を与え、マシンが高品質な予測を行うことを可能にする。
ほとんどの高度な機械学習アプローチは、大規模なデータを扱う場合の膨大な時間コストに悩まされる。
大規模機械学習は、ビッグデータからパターンを、同等のパフォーマンスで効率的に学習することを目的としている。
論文 参考訳(メタデータ) (2020-08-10T06:07:52Z) - Large Batch Training Does Not Need Warmup [111.07680619360528]
大きなバッチサイズを使用してディープニューラルネットワークをトレーニングすることは、有望な結果を示し、多くの現実世界のアプリケーションに利益をもたらしている。
本稿では,大規模バッチ学習のための全層適応レートスケーリング(CLARS)アルゴリズムを提案する。
分析に基づいて,このギャップを埋め,3つの一般的な大規模バッチトレーニング手法の理論的洞察を提示する。
論文 参考訳(メタデータ) (2020-02-04T23:03:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。