Probabilistic prediction of the heave motions of a semi-submersible by a
deep learning problem model
- URL: http://arxiv.org/abs/2111.00873v1
- Date: Sat, 9 Oct 2021 06:26:42 GMT
- Title: Probabilistic prediction of the heave motions of a semi-submersible by a
deep learning problem model
- Authors: Xiaoxian Guo, Xiantao Zhang, Xinliang Tian, Wenyue Lu, Xin Li
- Abstract summary: We extend a deep learning (DL) model to predict the heave and surge motions of a floating semi-submersible 20 to 50 seconds ahead with good accuracy.
This study extends the understanding of the DL model to predict the wave excited motions of an offshore platform.
- Score: 4.903969235471705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The real-time motion prediction of a floating offshore platform refers to
forecasting its motions in the following one- or two-wave cycles, which helps
improve the performance of a motion compensation system and provides useful
early warning information. In this study, we extend a deep learning (DL) model,
which could predict the heave and surge motions of a floating semi-submersible
20 to 50 seconds ahead with good accuracy, to quantify its uncertainty of the
predictive time series with the help of the dropout technique. By repeating the
inference several times, it is found that the collection of the predictive time
series is a Gaussian process (GP). The DL model with dropout learned a kernel
inside, and the learning procedure was similar to GP regression. Adding noise
into training data could help the model to learn more robust features from the
training data, thereby leading to a better performance on test data with a wide
noise level range. This study extends the understanding of the DL model to
predict the wave excited motions of an offshore platform.
Related papers
- Future-Guided Learning: A Predictive Approach To Enhance Time-Series Forecasting [4.866362841501992]
We introduce Future-Guided Learning, an approach that enhances time-series event forecasting.
Our approach involves two models: a detection model that analyzes future data to identify critical events and a forecasting model that predicts these events based on present data.
When discrepancies arise between the forecasting and detection models, the forecasting model undergoes more substantial updates.
arXiv Detail & Related papers (2024-10-19T21:22:55Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Learning with Noisy Foundation Models [95.50968225050012]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.
We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
Recent has shown that machine learning (ML) models can be trained to accurately forecast the dynamics of chaotic dynamical systems.
In the absence of mitigating techniques, this technique can result in artificially rapid error growth, leading to inaccurate predictions and/or climate instability.
We introduce Linearized Multi-Noise Training (LMNT), a regularization technique that deterministically approximates the effect of many small, independent noise realizations added to the model input during training.
arXiv Detail & Related papers (2022-11-09T23:40:52Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
We propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility.
Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data.
arXiv Detail & Related papers (2022-09-23T16:13:47Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Learning Accurate Long-term Dynamics for Model-based Reinforcement
Learning [7.194382512848327]
We propose a new parametrization to supervised learning on state-action data to stably predict at longer horizons.
Our results in simulated and experimental robotic tasks show that our trajectory-based models yield significantly more accurate long term predictions.
arXiv Detail & Related papers (2020-12-16T18:47:37Z) - Predicting heave and surge motions of a semi-submersible with neural
networks [4.0097067208724955]
Long short-term memory (LSTM) -based machine learning model was developed to predict heave and surge motions of a semi-submersible.
With the help of measured waves, the prediction extended 46.5 s into future with an average accuracy close to 90%.
arXiv Detail & Related papers (2020-07-31T11:24:46Z) - Long-Term Prediction of Lane Change Maneuver Through a Multilayer
Perceptron [5.267336573374459]
We propose a longer-term (510 seconds) lane change prediction model without any lateral or angle information.
Three prediction models are introduced, including a logistic regression model, a multilayer perceptron (MLP) model, and a recurrent neural network (RNN) model.
Evaluation results show that the developed prediction model is able to capture 75% of real lane change maneuvers with an average advanced prediction time of 8.05 seconds.
arXiv Detail & Related papers (2020-06-23T05:32:40Z) - New Perspectives on the Use of Online Learning for Congestion Level
Prediction over Traffic Data [6.664111208927475]
This work focuses on classification over time series data.
When a time series is generated by non-stationary phenomena, the pattern relating the series with the class to be predicted may evolve over time.
Online learning methods incrementally learn from new data samples arriving over time, and accommodate eventual changes along the data stream.
arXiv Detail & Related papers (2020-03-27T09:44:57Z) - Value-driven Hindsight Modelling [68.658900923595]
Value estimation is a critical component of the reinforcement learning (RL) paradigm.
Model learning can make use of the rich transition structure present in sequences of observations, but this approach is usually not sensitive to the reward function.
We develop an approach for representation learning in RL that sits in between these two extremes.
This provides tractable prediction targets that are directly relevant for a task, and can thus accelerate learning the value function.
arXiv Detail & Related papers (2020-02-19T18:10:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.