Long-Term Prediction of Lane Change Maneuver Through a Multilayer
Perceptron
- URL: http://arxiv.org/abs/2006.12769v1
- Date: Tue, 23 Jun 2020 05:32:40 GMT
- Title: Long-Term Prediction of Lane Change Maneuver Through a Multilayer
Perceptron
- Authors: Zhenyu Shou and Ziran Wang and Kyungtae Han and Yongkang Liu and
Prashant Tiwari and Xuan Di
- Abstract summary: We propose a longer-term (510 seconds) lane change prediction model without any lateral or angle information.
Three prediction models are introduced, including a logistic regression model, a multilayer perceptron (MLP) model, and a recurrent neural network (RNN) model.
Evaluation results show that the developed prediction model is able to capture 75% of real lane change maneuvers with an average advanced prediction time of 8.05 seconds.
- Score: 5.267336573374459
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Behavior prediction plays an essential role in both autonomous driving
systems and Advanced Driver Assistance Systems (ADAS), since it enhances
vehicle's awareness of the imminent hazards in the surrounding environment.
Many existing lane change prediction models take as input lateral or angle
information and make short-term (< 5 seconds) maneuver predictions. In this
study, we propose a longer-term (5~10 seconds) prediction model without any
lateral or angle information. Three prediction models are introduced, including
a logistic regression model, a multilayer perceptron (MLP) model, and a
recurrent neural network (RNN) model, and their performances are compared by
using the real-world NGSIM dataset. To properly label the trajectory data, this
study proposes a new time-window labeling scheme by adding a time gap between
positive and negative samples. Two approaches are also proposed to address the
unstable prediction issue, where the aggressive approach propagates each
positive prediction for certain seconds, while the conservative approach adopts
a roll-window average to smooth the prediction. Evaluation results show that
the developed prediction model is able to capture 75% of real lane change
maneuvers with an average advanced prediction time of 8.05 seconds.
Related papers
- Future-Guided Learning: A Predictive Approach To Enhance Time-Series Forecasting [4.866362841501992]
We introduce Future-Guided Learning, an approach that enhances time-series event forecasting.
Our approach involves two models: a detection model that analyzes future data to identify critical events and a forecasting model that predicts these events based on present data.
When discrepancies arise between the forecasting and detection models, the forecasting model undergoes more substantial updates.
arXiv Detail & Related papers (2024-10-19T21:22:55Z) - Certified Human Trajectory Prediction [66.1736456453465]
Tray prediction plays an essential role in autonomous vehicles.
We propose a certification approach tailored for the task of trajectory prediction.
We address the inherent challenges associated with trajectory prediction, including unbounded outputs, and mutli-modality.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - AMP: Autoregressive Motion Prediction Revisited with Next Token Prediction for Autonomous Driving [59.94343412438211]
We introduce the GPT style next token motion prediction into motion prediction.
Different from language data which is composed of homogeneous units -words, the elements in the driving scene could have complex spatial-temporal and semantic relations.
We propose to adopt three factorized attention modules with different neighbors for information aggregation and different position encoding styles to capture their relations.
arXiv Detail & Related papers (2024-03-20T06:22:37Z) - Towards Generalizable and Interpretable Motion Prediction: A Deep
Variational Bayes Approach [54.429396802848224]
This paper proposes an interpretable generative model for motion prediction with robust generalizability to out-of-distribution cases.
For interpretability, the model achieves the target-driven motion prediction by estimating the spatial distribution of long-term destinations.
Experiments on motion prediction datasets validate that the fitted model can be interpretable and generalizable.
arXiv Detail & Related papers (2024-03-10T04:16:04Z) - Adaptive Modeling of Uncertainties for Traffic Forecasting [33.81668910587541]
QuanTraffic is a generic framework to enhance the capability of an arbitrary DNN model for uncertainty modeling.
It automatically learns a standard quantile function during the DNN model training to produce a prediction interval for the single-point prediction.
It dynamically adjusts the prediction interval based on the location and prediction window of the test input.
arXiv Detail & Related papers (2023-03-16T12:56:13Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
Trajectory prediction is essential for autonomous vehicles to plan correct and safe driving behaviors.
We devise an optimization-based adversarial attack framework to generate realistic adversarial trajectories.
Our attack can lead an AV to drive off road or collide into other vehicles in simulation.
arXiv Detail & Related papers (2022-09-19T03:34:59Z) - Probabilistic prediction of the heave motions of a semi-submersible by a
deep learning problem model [4.903969235471705]
We extend a deep learning (DL) model to predict the heave and surge motions of a floating semi-submersible 20 to 50 seconds ahead with good accuracy.
This study extends the understanding of the DL model to predict the wave excited motions of an offshore platform.
arXiv Detail & Related papers (2021-10-09T06:26:42Z) - SLPC: a VRNN-based approach for stochastic lidar prediction and
completion in autonomous driving [63.87272273293804]
We propose a new LiDAR prediction framework that is based on generative models namely Variational Recurrent Neural Networks (VRNNs)
Our algorithm is able to address the limitations of previous video prediction frameworks when dealing with sparse data by spatially inpainting the depth maps in the upcoming frames.
We present a sparse version of VRNNs and an effective self-supervised training method that does not require any labels.
arXiv Detail & Related papers (2021-02-19T11:56:44Z) - Attentional-GCNN: Adaptive Pedestrian Trajectory Prediction towards
Generic Autonomous Vehicle Use Cases [10.41902340952981]
We propose a novel Graph Convolutional Neural Network (GCNN)-based approach, Attentional-GCNN, which aggregates information of implicit interaction between pedestrians in a crowd by assigning attention weight in edges of the graph.
We show our proposed method achieves an improvement over the state of art by 10% Average Displacement Error (ADE) and 12% Final Displacement Error (FDE) with fast inference speeds.
arXiv Detail & Related papers (2020-11-23T03:13:26Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) is a novel two-stage motion prediction framework.
TPNet first generates a candidate set of future trajectories as hypothesis proposals, then makes the final predictions by classifying and refining the proposals.
Experiments on four large-scale trajectory prediction datasets, show that TPNet achieves the state-of-the-art results both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-04-26T00:01:49Z) - Long-Short Term Spatiotemporal Tensor Prediction for Passenger Flow
Profile [15.875569404476495]
We focus on a tensor-based prediction and propose several practical techniques to improve prediction.
For long-term prediction specifically, we propose the "Tensor Decomposition + 2-Dimensional Auto-Regressive Moving Average (2D-ARMA)" model.
For short-term prediction, we propose to conduct tensor completion based on tensor clustering to avoid oversimplifying and ensure accuracy.
arXiv Detail & Related papers (2020-04-23T08:30:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.