Transfer Learning Approach to Bicycle-sharing Systems' Station Location
Planning using OpenStreetMap Data
- URL: http://arxiv.org/abs/2111.00990v1
- Date: Mon, 1 Nov 2021 14:56:49 GMT
- Title: Transfer Learning Approach to Bicycle-sharing Systems' Station Location
Planning using OpenStreetMap Data
- Authors: Kamil Raczycki, Piotr Szyma\'nski
- Abstract summary: This paper proposes a new solution to streamline and facilitate the process of such planning by using spatial embedding methods.
Based on publicly available data from OpenStreetMap, and station layouts from 34 cities in Europe, a method has been developed to divide cities into micro-regions.
- Score: 4.869953137750582
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Bicycle-sharing systems (BSS) have become a daily reality for many citizens
of larger, wealthier cities in developed regions. However, planning the layout
of bicycle-sharing stations usually requires expensive data gathering,
surveying travel behavior and trip modelling followed by station layout
optimization. Many smaller cities and towns, especially in developing areas,
may have difficulty financing such projects. Planning a BSS also takes a
considerable amount of time. Yet as the pandemic has shown us, municipalities
will face the need to adapt rapidly to mobility shifts, which include citizens
leaving public transport for bicycles. Laying out a bike sharing system quickly
will become critical in addressing the increase in bike demand. This paper
addresses the problem of cost and time in BSS layout design and proposes a new
solution to streamline and facilitate the process of such planning by using
spatial embedding methods. Based only on publicly available data from
OpenStreetMap, and station layouts from 34 cities in Europe, a method has been
developed to divide cities into micro-regions using the Uber H3 discrete global
grid system and to indicate regions where it is worth placing a station based
on existing systems in different cities using transfer learning. The result of
the work is a mechanism to support planners in their decision making when
planning a station layout with a choice of reference cities.
Related papers
- MetaUrban: An Embodied AI Simulation Platform for Urban Micromobility [52.0930915607703]
Recent advances in Robotics and Embodied AI make public urban spaces no longer exclusive to humans.
Micromobility enabled by AI for short-distance travel in public urban spaces plays a crucial component in the future transportation system.
We present MetaUrban, a compositional simulation platform for the AI-driven urban micromobility research.
arXiv Detail & Related papers (2024-07-11T17:56:49Z) - From Counting Stations to City-Wide Estimates: Data-Driven Bicycle Volume Extrapolation [0.0]
Street-level bicycle volume information would aid cities in planning targeted infrastructure improvements to encourage cycling.
The data currently available to cities and citizens often only comes from sparsely located counting stations.
This paper extrapolates bicycle volume beyond these few locations to estimate bicycle volume for the entire city of Berlin.
arXiv Detail & Related papers (2024-06-26T16:01:53Z) - Smart Recommendations for Renting Bikes in Bike Sharing Systems [1.5115914900997285]
Vehicle-sharing systems have become increasingly popular in big cities in recent years.
One of their advantages is their availability, e.g., the possibility of taking (or leaving) a vehicle almost anywhere in a city.
Agglutination problems -- where, due to usage patterns, available vehicles are concentrated in certain areas, whereas no vehicles are available in others -- are quite common in such systems.
We present and compare strategies for recommending stations to users who wish to rent or return bikes in station-based bike-sharing systems.
arXiv Detail & Related papers (2024-01-22T19:29:33Z) - Predicting Citi Bike Demand Evolution Using Dynamic Graphs [81.12174591442479]
We apply a graph neural network model to predict bike demand in the New York City, Citi Bike dataset.
In this paper, we attempt to apply a graph neural network model to predict bike demand in the New York City, Citi Bike dataset.
arXiv Detail & Related papers (2022-12-18T21:43:27Z) - Automated Detection of Missing Links in Bicycle Networks [0.15293427903448023]
We develop the IPDC procedure (Identify, Prioritize, Decluster, Classify) for finding the most important missing links in urban bicycle networks.
We first identify all possible gaps following a multiplex network approach, prioritize them according to a flow-based metric, decluster emerging gap clusters, and manually classify the types of gaps.
Our results show how network analysis with minimal data requirements can serve as a cost-efficient support tool for bicycle network planning.
arXiv Detail & Related papers (2022-01-10T15:35:14Z) - Predicting the Location of Bicycle-sharing Stations using OpenStreetMap
Data [0.0]
This thesis proposes a new solution to streamline and facilitate the process of such planning by using spatial embedding methods.
Based on publicly available data from OpenStreetMap, and station layouts from 34 cities in Europe, a method has been developed to divide cities into micro-regions.
The result of the work is a mechanism to support planners in their decision making when planning a station layout with a choice of reference cities.
arXiv Detail & Related papers (2021-11-02T16:44:00Z) - Dynamic Bicycle Dispatching of Dockless Public Bicycle-sharing Systems
using Multi-objective Reinforcement Learning [79.61517670541863]
How to use AI to provide efficient bicycle dispatching solutions based on dynamic bicycle rental demand is an essential issue for dockless PBS (DL-PBS)
We propose a dynamic bicycle dispatching algorithm based on multi-objective reinforcement learning (MORL-BD) to provide the optimal bicycle dispatching solution for DL-PBS.
arXiv Detail & Related papers (2021-01-19T03:09:51Z) - Dynamic Planning of Bicycle Stations in Dockless Public Bicycle-sharing
System Using Gated Graph Neural Network [79.61517670541863]
Dockless Public Bicycle-sharing (DL-PBS) network becomes increasingly popular in many countries.
redundant and low-utility stations waste public urban space and maintenance costs of DL-PBS vendors.
We propose a Bicycle Station Dynamic Planning (BSDP) system to dynamically provide the optimal bicycle station layout for the DL-PBS network.
arXiv Detail & Related papers (2021-01-19T02:51:12Z) - End-to-end Interpretable Neural Motion Planner [78.69295676456085]
We propose a neural motion planner (NMP) for learning to drive autonomously in complex urban scenarios.
We design a holistic model that takes as input raw LIDAR data and a HD map and produces interpretable intermediate representations.
We demonstrate the effectiveness of our approach in real-world driving data captured in several cities in North America.
arXiv Detail & Related papers (2021-01-17T14:16:12Z) - Towards Dynamic Urban Bike Usage Prediction for Station Network
Reconfiguration [7.5640951518267165]
Bike station-level prediction algorithm called AtCoR can predict bike usage at both existing and new stations.
AtCoR outperforms baselines and state-of-art models in prediction of both existing and future stations.
arXiv Detail & Related papers (2020-08-13T23:41:29Z) - Smart Urban Mobility: When Mobility Systems Meet Smart Data [55.456196356335745]
Cities around the world are expanding dramatically, with urban population growth reaching nearly 2.5 billion people in urban areas and road traffic growth exceeding 1.2 billion cars by 2050.
The economic contribution of the transport sector represents 5% of the GDP in Europe and costs an average of US $482.05 billion in the U.S.
arXiv Detail & Related papers (2020-05-09T13:53:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.