From Counting Stations to City-Wide Estimates: Data-Driven Bicycle Volume Extrapolation
- URL: http://arxiv.org/abs/2406.18454v2
- Date: Thu, 1 Aug 2024 08:09:40 GMT
- Title: From Counting Stations to City-Wide Estimates: Data-Driven Bicycle Volume Extrapolation
- Authors: Silke K. Kaiser, Nadja Klein, Lynn H. Kaack,
- Abstract summary: Street-level bicycle volume information would aid cities in planning targeted infrastructure improvements to encourage cycling.
The data currently available to cities and citizens often only comes from sparsely located counting stations.
This paper extrapolates bicycle volume beyond these few locations to estimate bicycle volume for the entire city of Berlin.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Shifting to cycling in urban areas reduces greenhouse gas emissions and improves public health. Street-level bicycle volume information would aid cities in planning targeted infrastructure improvements to encourage cycling and provide civil society with evidence to advocate for cyclists' needs. Yet, the data currently available to cities and citizens often only comes from sparsely located counting stations. This paper extrapolates bicycle volume beyond these few locations to estimate bicycle volume for the entire city of Berlin. We predict daily and average annual daily street-level bicycle volumes using machine-learning techniques and various public data sources. These include app-based crowdsourced data, infrastructure, bike-sharing, motorized traffic, socioeconomic indicators, weather, and holiday data. Our analysis reveals that the best-performing model is XGBoost, and crowdsourced cycling and infrastructure data are most important for the prediction. We further simulate how collecting short-term counts at predicted locations improves performance. By providing ten days of such sample counts for each predicted location to the model, we are able to halve the error and greatly reduce the variability in performance among predicted locations.
Related papers
- Evaluating the effects of Data Sparsity on the Link-level Bicycling Volume Estimation: A Graph Convolutional Neural Network Approach [54.84957282120537]
We present the first study to utilize a Graph Convolutional Network architecture to model link-level bicycling volumes.
We estimate the Annual Average Daily Bicycle (AADB) counts across the City of Melbourne, Australia using Strava Metro bicycling count data.
Our results show that the GCN model performs better than these traditional models in predicting AADB counts.
arXiv Detail & Related papers (2024-10-11T04:53:18Z) - Urban context and delivery performance: Modelling service time for cargo bikes and vans across diverse urban environments [7.501982397953223]
We introduce a modelling framework to predict the service times of deliveries based on urban context.
We employ Uber's H3 index to divide cities into hexagonal cells and aggregate OpenStreetMap tags for each cell.
GeoVex represents micro-regions as points in a continuous vector space, which then serve as input for predicting vehicle service times.
arXiv Detail & Related papers (2024-08-27T13:25:25Z) - Predicting Citi Bike Demand Evolution Using Dynamic Graphs [81.12174591442479]
We apply a graph neural network model to predict bike demand in the New York City, Citi Bike dataset.
In this paper, we attempt to apply a graph neural network model to predict bike demand in the New York City, Citi Bike dataset.
arXiv Detail & Related papers (2022-12-18T21:43:27Z) - Estimating city-wide hourly bicycle flow using a hybrid LSTM MDN [0.0]
Efforts to increase the bicycle's mode-share involve many measures, one of them being the improvement of cycling safety.
meaningful analysis of cycling safety requires accurate bicycle flow data that is generally sparse or not even available at a segment level.
This paper presents a Deep Learning based approach, to estimate hourly bicycle flow in Copenhagen, conditional on weather, temporal and road conditions.
arXiv Detail & Related papers (2022-04-20T17:00:29Z) - Automated Detection of Missing Links in Bicycle Networks [0.15293427903448023]
We develop the IPDC procedure (Identify, Prioritize, Decluster, Classify) for finding the most important missing links in urban bicycle networks.
We first identify all possible gaps following a multiplex network approach, prioritize them according to a flow-based metric, decluster emerging gap clusters, and manually classify the types of gaps.
Our results show how network analysis with minimal data requirements can serve as a cost-efficient support tool for bicycle network planning.
arXiv Detail & Related papers (2022-01-10T15:35:14Z) - Understanding Cycling Mobility: Bologna Case Study [0.0]
The main objective of this work is to study the cycling mobility within the city of Bologna, Italy.
We used six months dataset that consists of 320,118 self-reported bike trips.
The main results of this study indicate that bike usage is more correlated to temperature, and precipitation and has no correlation to wind speed and pollution.
arXiv Detail & Related papers (2021-09-09T13:11:35Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
We organize an experimental campaign with video measurement in an area within the urban network of Zurich, Switzerland.
We focus on capturing the traffic state in terms of traffic flow and travel times by ensuring measurements from established thermal cameras.
We propose a simple yet efficient Multiple Linear Regression (MLR) model to estimate travel times with fusion of various data sources.
arXiv Detail & Related papers (2021-08-02T08:13:57Z) - Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers [126.81938540470847]
We propose Euro-PVI, a dataset of pedestrian and bicyclist trajectories.
In this work, we develop a joint inference model that learns an expressive multi-modal shared latent space across agents in the urban scene.
We achieve state of the art results on the nuScenes and Euro-PVI datasets demonstrating the importance of capturing interactions between ego-vehicle and pedestrians (bicyclists) for accurate predictions.
arXiv Detail & Related papers (2021-06-22T15:40:21Z) - Dynamic Planning of Bicycle Stations in Dockless Public Bicycle-sharing
System Using Gated Graph Neural Network [79.61517670541863]
Dockless Public Bicycle-sharing (DL-PBS) network becomes increasingly popular in many countries.
redundant and low-utility stations waste public urban space and maintenance costs of DL-PBS vendors.
We propose a Bicycle Station Dynamic Planning (BSDP) system to dynamically provide the optimal bicycle station layout for the DL-PBS network.
arXiv Detail & Related papers (2021-01-19T02:51:12Z) - Exploring the weather impact on bike sharing usage through a clustering
analysis [7.541020519717183]
This study aims to explore how and in what magnitude weather impacts bike usage in Washington D.C.
Bike usage data and weather data are gathered for the city of Washington D.C. and are analyzed using k-means clustering algorithm.
arXiv Detail & Related papers (2020-08-17T12:24:37Z) - Measuring Spatial Subdivisions in Urban Mobility with Mobile Phone Data [58.720142291102135]
By 2050 two thirds of the world population will reside in urban areas.
This growth is faster and more complex than the ability of cities to measure and plan for their sustainability.
To understand what makes a city inclusive for all, we define a methodology to identify and characterize spatial subdivisions.
arXiv Detail & Related papers (2020-02-20T14:37:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.