Render In-between: Motion Guided Video Synthesis for Action
Interpolation
- URL: http://arxiv.org/abs/2111.01029v1
- Date: Mon, 1 Nov 2021 15:32:51 GMT
- Title: Render In-between: Motion Guided Video Synthesis for Action
Interpolation
- Authors: Hsuan-I Ho, Xu Chen, Jie Song, Otmar Hilliges
- Abstract summary: We propose a motion-guided frame-upsampling framework that is capable of producing realistic human motion and appearance.
A novel motion model is trained to inference the non-linear skeletal motion between frames by leveraging a large-scale motion-capture dataset.
Our pipeline only requires low-frame-rate videos and unpaired human motion data but does not require high-frame-rate videos for training.
- Score: 53.43607872972194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Upsampling videos of human activity is an interesting yet challenging task
with many potential applications ranging from gaming to entertainment and
sports broadcasting. The main difficulty in synthesizing video frames in this
setting stems from the highly complex and non-linear nature of human motion and
the complex appearance and texture of the body. We propose to address these
issues in a motion-guided frame-upsampling framework that is capable of
producing realistic human motion and appearance. A novel motion model is
trained to inference the non-linear skeletal motion between frames by
leveraging a large-scale motion-capture dataset (AMASS). The high-frame-rate
pose predictions are then used by a neural rendering pipeline to produce the
full-frame output, taking the pose and background consistency into
consideration. Our pipeline only requires low-frame-rate videos and unpaired
human motion data but does not require high-frame-rate videos for training.
Furthermore, we contribute the first evaluation dataset that consists of
high-quality and high-frame-rate videos of human activities for this task.
Compared with state-of-the-art video interpolation techniques, our method
produces in-between frames with better quality and accuracy, which is evident
by state-of-the-art results on pixel-level, distributional metrics and
comparative user evaluations. Our code and the collected dataset are available
at https://git.io/Render-In-Between.
Related papers
- MotionAura: Generating High-Quality and Motion Consistent Videos using Discrete Diffusion [3.7270979204213446]
We present four key contributions to address the challenges of video processing.
First, we introduce the 3D Inverted Vector-Quantization Variencoenco Autocoder.
Second, we present MotionAura, a text-to-video generation framework.
Third, we propose a spectral transformer-based denoising network.
Fourth, we introduce a downstream task of Sketch Guided Videopainting.
arXiv Detail & Related papers (2024-10-10T07:07:56Z) - Puppet-Master: Scaling Interactive Video Generation as a Motion Prior for Part-Level Dynamics [67.97235923372035]
We present Puppet-Master, an interactive video generative model that can serve as a motion prior for part-level dynamics.
At test time, given a single image and a sparse set of motion trajectories, Puppet-Master can synthesize a video depicting realistic part-level motion faithful to the given drag interactions.
arXiv Detail & Related papers (2024-08-08T17:59:38Z) - Controllable Longer Image Animation with Diffusion Models [12.565739255499594]
We introduce an open-domain controllable image animation method using motion priors with video diffusion models.
Our method achieves precise control over the direction and speed of motion in the movable region by extracting the motion field information from videos.
We propose an efficient long-duration video generation method based on noise reschedule specifically tailored for image animation tasks.
arXiv Detail & Related papers (2024-05-27T16:08:00Z) - ActAnywhere: Subject-Aware Video Background Generation [62.57759679425924]
Generating video background that tailors to foreground subject motion is an important problem for the movie industry and visual effects community.
This task involves background that aligns with the motion and appearance of the foreground subject, while also complies with the artist's creative intention.
We introduce ActAnywhere, a generative model that automates this process which traditionally requires tedious manual efforts.
arXiv Detail & Related papers (2024-01-19T17:16:16Z) - DynIBaR: Neural Dynamic Image-Based Rendering [79.44655794967741]
We address the problem of synthesizing novel views from a monocular video depicting a complex dynamic scene.
We adopt a volumetric image-based rendering framework that synthesizes new viewpoints by aggregating features from nearby views.
We demonstrate significant improvements over state-of-the-art methods on dynamic scene datasets.
arXiv Detail & Related papers (2022-11-20T20:57:02Z) - A Good Image Generator Is What You Need for High-Resolution Video
Synthesis [73.82857768949651]
We present a framework that leverages contemporary image generators to render high-resolution videos.
We frame the video synthesis problem as discovering a trajectory in the latent space of a pre-trained and fixed image generator.
We introduce a motion generator that discovers the desired trajectory, in which content and motion are disentangled.
arXiv Detail & Related papers (2021-04-30T15:38:41Z) - High-Fidelity Neural Human Motion Transfer from Monocular Video [71.75576402562247]
Video-based human motion transfer creates video animations of humans following a source motion.
We present a new framework which performs high-fidelity and temporally-consistent human motion transfer with natural pose-dependent non-rigid deformations.
In the experimental results, we significantly outperform the state-of-the-art in terms of video realism.
arXiv Detail & Related papers (2020-12-20T16:54:38Z) - Going beyond Free Viewpoint: Creating Animatable Volumetric Video of
Human Performances [7.7824496657259665]
We present an end-to-end pipeline for the creation of high-quality animatable volumetric video content of human performances.
Semantic enrichment and geometric animation ability are achieved by establishing temporal consistency in the 3D data.
For pose editing, we exploit the captured data as much as possible and kinematically deform the captured frames to fit a desired pose.
arXiv Detail & Related papers (2020-09-02T09:46:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.