MOST-GAN: 3D Morphable StyleGAN for Disentangled Face Image Manipulation
- URL: http://arxiv.org/abs/2111.01048v1
- Date: Mon, 1 Nov 2021 15:53:36 GMT
- Title: MOST-GAN: 3D Morphable StyleGAN for Disentangled Face Image Manipulation
- Authors: Safa C. Medin, Bernhard Egger, Anoop Cherian, Ye Wang, Joshua B.
Tenenbaum, Xiaoming Liu, Tim K. Marks
- Abstract summary: We propose a framework that a priori models physical attributes of the face explicitly, thus providing disentanglement by design.
Our method, MOST-GAN, integrates the expressive power and photorealism of style-based GANs with the physical disentanglement and flexibility of nonlinear 3D morphable models.
It achieves photorealistic manipulation of portrait images with fully disentangled 3D control over their physical attributes, enabling extreme manipulation of lighting, facial expression, and pose variations up to full profile view.
- Score: 69.35523133292389
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in generative adversarial networks (GANs) have led to
remarkable achievements in face image synthesis. While methods that use
style-based GANs can generate strikingly photorealistic face images, it is
often difficult to control the characteristics of the generated faces in a
meaningful and disentangled way. Prior approaches aim to achieve such semantic
control and disentanglement within the latent space of a previously trained
GAN. In contrast, we propose a framework that a priori models physical
attributes of the face such as 3D shape, albedo, pose, and lighting explicitly,
thus providing disentanglement by design. Our method, MOST-GAN, integrates the
expressive power and photorealism of style-based GANs with the physical
disentanglement and flexibility of nonlinear 3D morphable models, which we
couple with a state-of-the-art 2D hair manipulation network. MOST-GAN achieves
photorealistic manipulation of portrait images with fully disentangled 3D
control over their physical attributes, enabling extreme manipulation of
lighting, facial expression, and pose variations up to full profile view.
Related papers
- Single-Shot Implicit Morphable Faces with Consistent Texture
Parameterization [91.52882218901627]
We propose a novel method for constructing implicit 3D morphable face models that are both generalizable and intuitive for editing.
Our method improves upon photo-realism, geometry, and expression accuracy compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-05-04T17:58:40Z) - CGOF++: Controllable 3D Face Synthesis with Conditional Generative
Occupancy Fields [52.14985242487535]
We propose a new conditional 3D face synthesis framework, which enables 3D controllability over generated face images.
At its core is a conditional Generative Occupancy Field (cGOF++) that effectively enforces the shape of the generated face to conform to a given 3D Morphable Model (3DMM) mesh.
Experiments validate the effectiveness of the proposed method and show more precise 3D controllability than state-of-the-art 2D-based controllable face synthesis methods.
arXiv Detail & Related papers (2022-11-23T19:02:50Z) - 3DMM-RF: Convolutional Radiance Fields for 3D Face Modeling [111.98096975078158]
We introduce a style-based generative network that synthesizes in one pass all and only the required rendering samples of a neural radiance field.
We show that this model can accurately be fit to "in-the-wild" facial images of arbitrary pose and illumination, extract the facial characteristics, and be used to re-render the face in controllable conditions.
arXiv Detail & Related papers (2022-09-15T15:28:45Z) - Explicitly Controllable 3D-Aware Portrait Generation [42.30481422714532]
We propose a 3D portrait generation network that produces consistent portraits according to semantic parameters regarding pose, identity, expression and lighting.
Our method outperforms prior arts in extensive experiments, producing realistic portraits with vivid expression in natural lighting when viewed in free viewpoint.
arXiv Detail & Related papers (2022-09-12T17:40:08Z) - 3D-FM GAN: Towards 3D-Controllable Face Manipulation [43.99393180444706]
3D-FM GAN is a novel conditional GAN framework designed specifically for 3D-controllable face manipulation.
By carefully encoding both the input face image and a physically-based rendering of 3D edits into a StyleGAN's latent spaces, our image generator provides high-quality, identity-preserved, 3D-controllable face manipulation.
We show that our method outperforms the prior arts on various tasks, with better editability, stronger identity preservation, and higher photo-realism.
arXiv Detail & Related papers (2022-08-24T01:33:13Z) - Normalized Avatar Synthesis Using StyleGAN and Perceptual Refinement [11.422683083130577]
We introduce a highly robust GAN-based framework for digitizing a normalized 3D avatar of a person from a single unconstrained photo.
While the input image can be of a smiling person or taken in extreme lighting conditions, our method can reliably produce a high-quality textured model of a person's face.
arXiv Detail & Related papers (2021-06-21T21:57:16Z) - Lifting 2D StyleGAN for 3D-Aware Face Generation [52.8152883980813]
We propose a framework, called LiftedGAN, that disentangles and lifts a pre-trained StyleGAN2 for 3D-aware face generation.
Our model is "3D-aware" in the sense that it is able to (1) disentangle the latent space of StyleGAN2 into texture, shape, viewpoint, lighting and (2) generate 3D components for synthetic images.
arXiv Detail & Related papers (2020-11-26T05:02:09Z) - StyleRig: Rigging StyleGAN for 3D Control over Portrait Images [81.43265493604302]
StyleGAN generates portrait images of faces with eyes, teeth, hair and context (neck, shoulders, background)
StyleGAN lacks a rig-like control over semantic face parameters that are interpretable in 3D, such as face pose, expressions, and scene illumination.
We present the first method to provide a face rig-like control over a pretrained and fixed StyleGAN via a 3DMM.
arXiv Detail & Related papers (2020-03-31T21:20:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.