Stock Price Prediction Using Time Series, Econometric, Machine Learning,
and Deep Learning Models
- URL: http://arxiv.org/abs/2111.01137v1
- Date: Mon, 1 Nov 2021 17:17:52 GMT
- Title: Stock Price Prediction Using Time Series, Econometric, Machine Learning,
and Deep Learning Models
- Authors: Ananda Chatterjee, Hrisav Bhowmick, and Jaydip Sen
- Abstract summary: This paper demonstrates a set of time series, econometric, and various learning-based models for stock price prediction.
The data of Infosys, ICICI, and SUN PHARMA from the period of January 2004 to December 2019 was used here for training and testing the models.
Mars has proved to be the best performing machine learning model, while LSTM has proved to be the best performing deep learning model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For a long-time, researchers have been developing a reliable and accurate
predictive model for stock price prediction. According to the literature, if
predictive models are correctly designed and refined, they can painstakingly
and faithfully estimate future stock values. This paper demonstrates a set of
time series, econometric, and various learning-based models for stock price
prediction. The data of Infosys, ICICI, and SUN PHARMA from the period of
January 2004 to December 2019 was used here for training and testing the models
to know which model performs best in which sector. One time series model
(Holt-Winters Exponential Smoothing), one econometric model (ARIMA), two
machine Learning models (Random Forest and MARS), and two deep learning-based
models (simple RNN and LSTM) have been included in this paper. MARS has been
proved to be the best performing machine learning model, while LSTM has proved
to be the best performing deep learning model. But overall, for all three
sectors - IT (on Infosys data), Banking (on ICICI data), and Health (on SUN
PHARMA data), MARS has proved to be the best performing model in sales
forecasting.
Related papers
- Stock Price Prediction and Traditional Models: An Approach to Achieve Short-, Medium- and Long-Term Goals [0.0]
A comparative analysis of deep learning models and traditional statistical methods for stock price prediction uses data from the Nigerian stock exchange.
Deep learning models, particularly LSTM, outperform traditional methods by capturing complex, nonlinear patterns in the data.
The findings highlight the potential of deep learning for improving financial forecasting and investment strategies.
arXiv Detail & Related papers (2024-09-29T11:20:20Z) - Getting More Juice Out of the SFT Data: Reward Learning from Human Demonstration Improves SFT for LLM Alignment [65.15914284008973]
We propose to leverage an Inverse Reinforcement Learning (IRL) technique to simultaneously build an reward model and a policy model.
We show that the proposed algorithms converge to the stationary solutions of the IRL problem.
Our results indicate that it is beneficial to leverage reward learning throughout the entire alignment process.
arXiv Detail & Related papers (2024-05-28T07:11:05Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
Consider making a prediction over new test data without any opportunity to learn from a training set of labelled data.
Give access to a set of expert models and their predictions alongside some limited information about the dataset used to train them.
arXiv Detail & Related papers (2022-10-11T10:20:31Z) - METRO: Efficient Denoising Pretraining of Large Scale Autoencoding
Language Models with Model Generated Signals [151.3601429216877]
We present an efficient method of pretraining large-scale autoencoding language models using training signals generated by an auxiliary model.
We propose a recipe, namely "Model generated dEnoising TRaining Objective" (METRO)
The resultant models, METRO-LM, consisting of up to 5.4 billion parameters, achieve new state-of-the-art on the GLUE, SuperGLUE, and SQuAD benchmarks.
arXiv Detail & Related papers (2022-04-13T21:39:15Z) - Comparing Test Sets with Item Response Theory [53.755064720563]
We evaluate 29 datasets using predictions from 18 pretrained Transformer models on individual test examples.
We find that Quoref, HellaSwag, and MC-TACO are best suited for distinguishing among state-of-the-art models.
We also observe span selection task format, which is used for QA datasets like QAMR or SQuAD2.0, is effective in differentiating between strong and weak models.
arXiv Detail & Related papers (2021-06-01T22:33:53Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
We study a number of design decisions for the predictive model in visual MBRL algorithms.
We find that a range of design decisions that are often considered crucial, such as the use of latent spaces, have little effect on task performance.
We show how this phenomenon is related to exploration and how some of the lower-scoring models on standard benchmarks will perform the same as the best-performing models when trained on the same training data.
arXiv Detail & Related papers (2020-12-08T18:03:21Z) - Robust Analysis of Stock Price Time Series Using CNN and LSTM-Based Deep
Learning Models [0.0]
We present a suite of deep learning-based regression models that yields a very high level of accuracy in stock price prediction.
We build four convolutional neural network (CNN) and five long- and short-term memory (LSTM)-based deep learning models for accurate forecasting of the future stock prices.
arXiv Detail & Related papers (2020-11-07T16:07:10Z) - A Deep Learning Framework for Predicting Digital Asset Price Movement
from Trade-by-trade Data [20.392440676633573]
This paper presents a framework that predicts price movement of cryptocurrencies from trade-by-trade data.
The model is trained to achieve high performance on nearly a year of trade-by-trade data.
In a realistic trading simulation setting, the prediction made by the model could be easily monetized.
arXiv Detail & Related papers (2020-10-11T10:42:02Z) - Stock Price Prediction Using Machine Learning and LSTM-Based Deep
Learning Models [1.335161061703997]
We propose an approach of hybrid modeling for stock price prediction building different machine learning and deep learning-based models.
We have used NIFTY 50 index values of the National Stock Exchange (NSE) of India during the period December 29, 2014 till July 31, 2020.
We exploit the power of LSTM regression models in forecasting the future NIFTY 50 open values using four different models that differ in their architecture and in the structure of their input data.
arXiv Detail & Related papers (2020-09-20T20:32:33Z) - VAE-LIME: Deep Generative Model Based Approach for Local Data-Driven
Model Interpretability Applied to the Ironmaking Industry [70.10343492784465]
It is necessary to expose to the process engineer, not solely the model predictions, but also their interpretability.
Model-agnostic local interpretability solutions based on LIME have recently emerged to improve the original method.
We present in this paper a novel approach, VAE-LIME, for local interpretability of data-driven models forecasting the temperature of the hot metal produced by a blast furnace.
arXiv Detail & Related papers (2020-07-15T07:07:07Z) - A Time Series Analysis-Based Stock Price Prediction Using Machine
Learning and Deep Learning Models [0.0]
We present a very robust and accurate framework of stock price prediction that consists of an agglomeration of statistical, machine learning and deep learning models.
We use the daily stock price data, collected at five minutes interval of time, of a very well known company that is listed in the National Stock Exchange (NSE) of India.
We contend that the agglomerative approach of model building that uses a combination of statistical, machine learning, and deep learning approaches, can very effectively learn from the volatile and random movement patterns in a stock price data.
arXiv Detail & Related papers (2020-04-17T19:41:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.