Robust Analysis of Stock Price Time Series Using CNN and LSTM-Based Deep
Learning Models
- URL: http://arxiv.org/abs/2011.08011v2
- Date: Sat, 2 Jan 2021 08:04:43 GMT
- Title: Robust Analysis of Stock Price Time Series Using CNN and LSTM-Based Deep
Learning Models
- Authors: Sidra Mehtab, Jaydip Sen and Subhasis Dasgupta
- Abstract summary: We present a suite of deep learning-based regression models that yields a very high level of accuracy in stock price prediction.
We build four convolutional neural network (CNN) and five long- and short-term memory (LSTM)-based deep learning models for accurate forecasting of the future stock prices.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prediction of stock price and stock price movement patterns has always been a
critical area of research. While the well-known efficient market hypothesis
rules out any possibility of accurate prediction of stock prices, there are
formal propositions in the literature demonstrating accurate modeling of the
predictive systems that can enable us to predict stock prices with a very high
level of accuracy. In this paper, we present a suite of deep learning-based
regression models that yields a very high level of accuracy in stock price
prediction. To build our predictive models, we use the historical stock price
data of a well-known company listed in the National Stock Exchange (NSE) of
India during the period December 31, 2012 to January 9, 2015. The stock prices
are recorded at five minutes intervals of time during each working day in a
week. Using these extremely granular stock price data, we build four
convolutional neural network (CNN) and five long- and short-term memory
(LSTM)-based deep learning models for accurate forecasting of the future stock
prices. We provide detailed results on the forecasting accuracies of all our
proposed models based on their execution time and their root mean square error
(RMSE) values.
Related papers
- F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
We propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility.
Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data.
arXiv Detail & Related papers (2022-09-23T16:13:47Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
This paper aims to capture the movement pattern of stock prices under anomalous circumstances.
We train ARIMA and LSTM models at the single-stock level, industry level, and general market level.
Based on 100 companies' stock prices in the period of 2016 to 2020, the models achieve an average prediction accuracy of 98%.
arXiv Detail & Related papers (2021-09-14T18:50:38Z) - Design and Analysis of Robust Deep Learning Models for Stock Price
Prediction [0.0]
Building predictive models for robust and accurate prediction of stock prices and stock price movement is a challenging research problem to solve.
This chapter proposes a collection of predictive regression models built on deep learning architecture for robust and precise prediction of the future prices of a stock listed in the diversified sectors in the National Stock Exchange (NSE) of India.
arXiv Detail & Related papers (2021-06-17T17:15:02Z) - Accurate Stock Price Forecasting Using Robust and Optimized Deep
Learning Models [0.0]
We present a gamut of ten deep learning models of regression for precise and robust prediction of the future prices of the stock of a critical company in the auto sector of India.
Using a very granular stock price collected at 5 minutes intervals, we train the models based on the records from 31st Dec, 2012 to 27th Dec, 2013.
We explain the design principles of the models and analyze the results of their performance based on accuracy in forecasting and speed of execution.
arXiv Detail & Related papers (2021-03-28T09:52:29Z) - Stock Price Prediction Using CNN and LSTM-Based Deep Learning Models [0.0]
This paper presents a suite of deep learning based models for stock price prediction.
We use the historical records of the NIFTY 50 index listed in the National Stock Exchange of India.
Our proposition includes two regression models built on convolutional neural networks and three long and short term memory network based predictive models.
arXiv Detail & Related papers (2020-10-22T03:09:07Z) - Stock2Vec: A Hybrid Deep Learning Framework for Stock Market Prediction
with Representation Learning and Temporal Convolutional Network [71.25144476293507]
We have proposed to develop a global hybrid deep learning framework to predict the daily prices in the stock market.
With representation learning, we derived an embedding called Stock2Vec, which gives us insight for the relationship among different stocks.
Our hybrid framework integrates both advantages and achieves better performance on the stock price prediction task than several popular benchmarked models.
arXiv Detail & Related papers (2020-09-29T22:54:30Z) - Stock Price Prediction Using Machine Learning and LSTM-Based Deep
Learning Models [1.335161061703997]
We propose an approach of hybrid modeling for stock price prediction building different machine learning and deep learning-based models.
We have used NIFTY 50 index values of the National Stock Exchange (NSE) of India during the period December 29, 2014 till July 31, 2020.
We exploit the power of LSTM regression models in forecasting the future NIFTY 50 open values using four different models that differ in their architecture and in the structure of their input data.
arXiv Detail & Related papers (2020-09-20T20:32:33Z) - Deep Stock Predictions [58.720142291102135]
We consider the design of a trading strategy that performs portfolio optimization using Long Short Term Memory (LSTM) neural networks.
We then customize the loss function used to train the LSTM to increase the profit earned.
We find the LSTM model with the customized loss function to have an improved performance in the training bot over a regressive baseline such as ARIMA.
arXiv Detail & Related papers (2020-06-08T23:37:47Z) - A Time Series Analysis-Based Stock Price Prediction Using Machine
Learning and Deep Learning Models [0.0]
We present a very robust and accurate framework of stock price prediction that consists of an agglomeration of statistical, machine learning and deep learning models.
We use the daily stock price data, collected at five minutes interval of time, of a very well known company that is listed in the National Stock Exchange (NSE) of India.
We contend that the agglomerative approach of model building that uses a combination of statistical, machine learning, and deep learning approaches, can very effectively learn from the volatile and random movement patterns in a stock price data.
arXiv Detail & Related papers (2020-04-17T19:41:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.