論文の概要: Implicit Model Specialization through DAG-based Decentralized Federated
Learning
- arxiv url: http://arxiv.org/abs/2111.01257v2
- Date: Wed, 3 Nov 2021 08:09:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-04 10:44:21.429714
- Title: Implicit Model Specialization through DAG-based Decentralized Federated
Learning
- Title(参考訳): DAGに基づく分散フェデレーション学習によるインプシットモデル特殊化
- Authors: Jossekin Beilharz, Bjarne Pfitzner, Robert Schmid, Paul Geppert, Bert
Arnrich, and Andreas Polze
- Abstract要約: フェデレートされた学習により、分散クライアントのグループは、プライベートデータ上で共通の機械学習モデルをトレーニングできる。
連合学習における分散化とパーソナライズへの統一的なアプローチを提案する。
評価の結果,モデル更新のDAGに基づく通信から直接,モデルの特殊化が現れることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Federated learning allows a group of distributed clients to train a common
machine learning model on private data. The exchange of model updates is
managed either by a central entity or in a decentralized way, e.g. by a
blockchain. However, the strong generalization across all clients makes these
approaches unsuited for non-independent and identically distributed (non-IID)
data.
We propose a unified approach to decentralization and personalization in
federated learning that is based on a directed acyclic graph (DAG) of model
updates. Instead of training a single global model, clients specialize on their
local data while using the model updates from other clients dependent on the
similarity of their respective data. This specialization implicitly emerges
from the DAG-based communication and selection of model updates. Thus, we
enable the evolution of specialized models, which focus on a subset of the data
and therefore cover non-IID data better than federated learning in a
centralized or blockchain-based setup.
To the best of our knowledge, the proposed solution is the first to unite
personalization and poisoning robustness in fully decentralized federated
learning. Our evaluation shows that the specialization of models emerges
directly from the DAG-based communication of model updates on three different
datasets. Furthermore, we show stable model accuracy and less variance across
clients when compared to federated averaging.
- Abstract(参考訳): フェデレートされた学習により、分散クライアントのグループは、プライベートデータ上で共通の機械学習モデルをトレーニングできる。
モデル更新の交換は、中央のエンティティまたは分散型の方法で、例えばブロックチェーンによって管理される。
しかし、すべてのクライアント間の強い一般化により、これらのアプローチは非独立かつ同一の分散(非iid)データには適さない。
モデル更新の有向非巡回グラフ(DAG)に基づくフェデレーション学習における分散化とパーソナライズへの統一的なアプローチを提案する。
単一のグローバルモデルをトレーニングする代わりに、クライアントはローカルデータに特化して、各データの類似性に依存する他のクライアントからのモデル更新を使用する。
この特殊化は、DAGベースの通信とモデル更新の選択から暗黙的に現れる。
このように、データのサブセットに焦点を当てた特殊なモデルの進化を可能にすることで、集中型あるいはブロックチェーンベースのセットアップでのフェデレーション学習よりも、非IIDデータをカバーできるのです。
私たちの知る限りでは、提案するソリューションは、完全に分散した連合学習において、パーソナライゼーションと有毒な堅牢性を統合する最初の方法です。
評価の結果,3つのデータセット上でのモデル更新のDAGに基づく通信から,モデルの特殊化が直接現れることがわかった。
さらに,フェデレート平均化と比較してモデル精度が安定し,クライアント間のばらつきも小さくなった。
関連論文リスト
- FedSPD: A Soft-clustering Approach for Personalized Decentralized Federated Learning [18.38030098837294]
フェデレーション学習は、分散クライアントがローカルデータを使用して機械学習モデルを協調的にトレーニングするためのフレームワークである。
分散環境のための効率的パーソナライズされたフェデレーション学習アルゴリズムであるFedSPDを提案する。
低接続性ネットワークにおいてもFedSPDが正確なモデルを学ぶことを示す。
論文 参考訳(メタデータ) (2024-10-24T15:48:34Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - A Personalized Federated Learning Algorithm: an Application in Anomaly
Detection [0.6700873164609007]
フェデレートラーニング(FL)は、データプライバシと送信問題を克服する有望な方法として最近登場した。
FLでは、異なるデバイスやセンサーから収集されたデータセットを使用して、各学習を集中型モデル(サーバ)と共有するローカルモデル(クライアント)をトレーニングする。
本稿では,PC-FedAvg(Personalized FedAvg, PC-FedAvg)を提案する。
論文 参考訳(メタデータ) (2021-11-04T04:57:11Z) - Decentralised Person Re-Identification with Selective Knowledge
Aggregation [56.40855978874077]
既存の人物再識別(Re-ID)手法は、主に、モデル学習のためのコレクションにすべてのトレーニングデータを共有する集中型学習パラダイムに従っている。
グローバルに一般化されたモデル(サーバ)を構築するための分散(フェデレーション)Re-ID学習を導入した最近の2つの作品がある。
しかし、これらの手法は、個々のクライアントドメインのRe-IDタスクのパフォーマンスを最大化するために一般化されたモデルを適用する方法に乏しい。
我々は、モデルパーソナライゼーションと一般化のトレードオフを最適化するために、分散化されたRe-IDに対して、新しい選択的知識集約アプローチを提案する。
論文 参考訳(メタデータ) (2021-10-21T18:09:53Z) - Decentralized federated learning of deep neural networks on non-iid data [0.6335848702857039]
分散環境でパーソナライズされたディープラーニングモデルを学ぶことの難しさに対処する。
本稿では,PENS(Performance-Based Neighbor Selection)という手法を提案する。
PENSは強力なベースラインに比べて高い精度を達成することができる。
論文 参考訳(メタデータ) (2021-07-18T19:05:44Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
フェデレーション学習は重要な分散学習パラダイムとして登場し、サーバはクライアントデータにアクセスせずに、多くのクライアントがトレーニングしたモデルからグローバルモデルを集約する。
本稿では, 統計的不均一性を緩和し, フェデレートネットワークにおけるクライアント間での精度向上を図るために, ゼロショットデータ拡張を用いた新しいフェデレーション学習システムを提案する。
Fed-ZDAC (クライアントでのゼロショットデータ拡張によるフェデレーション学習) と Fed-ZDAS (サーバでのゼロショットデータ拡張によるフェデレーション学習) の2種類について検討する。
論文 参考訳(メタデータ) (2021-04-27T18:23:54Z) - Decentralized Federated Learning via Mutual Knowledge Transfer [37.5341683644709]
分散型連合学習(DFL)は、モノのインターネット(IoT)システムにおける問題です。
現地のクライアントが学習した知識を相互に転送することでモデルを融合させる相互知識伝達(Def-KT)アルゴリズムを提案します。
MNIST, Fashion-MNIST, CIFAR10データセットに対する実験により,提案アルゴリズムがベースラインDFL法を著しく上回るデータセットを明らかにした。
論文 参考訳(メタデータ) (2020-12-24T01:43:53Z) - Personalized Federated Learning with First Order Model Optimization [76.81546598985159]
そこで我々は,各クライアントが他のクライアントと連携して,クライアント固有の目的ごとのより強力なモデルを得る,フェデレーション学習の代替案を提案する。
基礎となるデータ分布やクライアントの類似性に関する知識を前提とせず、各クライアントが関心のある任意のターゲット分布を最適化できるようにします。
この手法は既存の代替品を上回り、ローカルデータ配信以外の転送のようなパーソナライズされたFLの新機能を可能にする。
論文 参考訳(メタデータ) (2020-12-15T19:30:29Z) - Decentralised Learning from Independent Multi-Domain Labels for Person
Re-Identification [69.29602103582782]
ディープラーニングは多くのコンピュータビジョンタスクで成功している。
しかし、プライバシー問題に対する意識の高まりは、特に人物の再識別(Re-ID)において、ディープラーニングに新たな課題をもたらす。
我々は,複数のプライバシ保護されたローカルモデル(ローカルクライアント)を同時に学習することにより,汎用的なグローバルモデル(中央サーバ)を構築するための,フェデレート・パーソナライゼーション(FedReID)と呼ばれる新しいパラダイムを提案する。
このクライアントサーバ共同学習プロセスは、プライバシコントロールの下で反復的に実行されるため、分散データを共有したり、収集したりすることなく、分散学習を実現することができる。
論文 参考訳(メタデータ) (2020-06-07T13:32:33Z) - Multi-Center Federated Learning [62.57229809407692]
本稿では,フェデレート学習のための新しい多中心集約機構を提案する。
非IIDユーザデータから複数のグローバルモデルを学び、同時にユーザとセンタ間の最適なマッチングを導出する。
ベンチマークデータセットによる実験結果から,本手法はいくつかの一般的なフェデレーション学習法より優れていることが示された。
論文 参考訳(メタデータ) (2020-05-03T09:14:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。