A Comparative Analysis of Machine Learning Algorithms for Intrusion
Detection in Edge-Enabled IoT Networks
- URL: http://arxiv.org/abs/2111.01383v1
- Date: Tue, 2 Nov 2021 05:58:07 GMT
- Title: A Comparative Analysis of Machine Learning Algorithms for Intrusion
Detection in Edge-Enabled IoT Networks
- Authors: Poornima Mahadevappa, Syeda Mariam Muzammal and Raja Kumar Murugesan
- Abstract summary: Intrusion detection is one of the challenging issues in the area of network security.
In this paper, a comparative analysis of conventional machine learning classification algorithms has been performed.
It can be observed that Multi-Layer Perception (MLP) has dependencies between input and output and relies more on network configuration for intrusion detection.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A significant increase in the number of interconnected devices and data
communication through wireless networks has given rise to various threats,
risks and security concerns. Internet of Things (IoT) applications is deployed
in almost every field of daily life, including sensitive environments. The edge
computing paradigm has complemented IoT applications by moving the
computational processing near the data sources. Among various security models,
Machine Learning (ML) based intrusion detection is the most conceivable defense
mechanism to combat the anomalous behavior in edge-enabled IoT networks. The ML
algorithms are used to classify the network traffic into normal and malicious
attacks. Intrusion detection is one of the challenging issues in the area of
network security. The research community has proposed many intrusion detection
systems. However, the challenges involved in selecting suitable algorithm(s) to
provide security in edge-enabled IoT networks exist. In this paper, a
comparative analysis of conventional machine learning classification algorithms
has been performed to categorize the network traffic on NSL-KDD dataset using
Jupyter on Pycharm tool. It can be observed that Multi-Layer Perception (MLP)
has dependencies between input and output and relies more on network
configuration for intrusion detection. Therefore, MLP can be more appropriate
for edge-based IoT networks with a better training time of 1.2 seconds and
testing accuracy of 79%.
Related papers
- SCGNet-Stacked Convolution with Gated Recurrent Unit Network for Cyber Network Intrusion Detection and Intrusion Type Classification [0.0]
Intrusion detection systems (IDSs) are far from being able to quickly and efficiently identify complex and varied network attacks.
The SCGNet is a novel deep learning architecture that we propose in this study.
It exhibits promising results on the NSL-KDD dataset in both task, network attack detection, and attack type classification with 99.76% and 98.92% accuracy, respectively.
arXiv Detail & Related papers (2024-10-29T09:09:08Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Intrusion Detection: A Deep Learning Approach [0.0]
The paper proposes a novel architecture to combat intrusion detection that has a Convolutional Neural Network (CNN) module, along with a Long Short Term Memory(LSTM) module and a Support Vector Machine (SVM) classification function.
The analysis is followed by a comparison of both conventional machine learning techniques and deep learning methodologies, which highlights areas that could be further explored.
arXiv Detail & Related papers (2023-06-13T07:58:40Z) - Unsupervised Ensemble Based Deep Learning Approach for Attack Detection
in IoT Network [0.0]
Internet of Things (IoT) has altered living by controlling devices/things over the Internet.
To bring down the IoT network, attackers can utilise these devices to conduct a variety of network attacks.
In this paper, we have developed an unsupervised ensemble learning model that is able to detect new or unknown attacks in an IoT network from an unlabelled dataset.
arXiv Detail & Related papers (2022-07-16T11:12:32Z) - An Online Ensemble Learning Model for Detecting Attacks in Wireless
Sensor Networks [0.0]
We develop an intelligent, efficient, and updatable intrusion detection system by applying an important machine learning concept known as ensemble learning.
In this paper, we examine the application of different homogeneous and heterogeneous online ensembles in sensory data analysis.
Among the proposed novel online ensembles, both the heterogeneous ensemble consisting of an Adaptive Random Forest (ARF) combined with the Hoeffding Adaptive Tree (HAT) algorithm and the homogeneous ensemble HAT made up of 10 models achieved higher detection rates of 96.84% and 97.2%, respectively.
arXiv Detail & Related papers (2022-04-28T23:10:47Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Few-shot Network Anomaly Detection via Cross-network Meta-learning [45.8111239825361]
We propose a new family of graph neural networks -- Graph Deviation Networks (GDN)
GDN can leverage a small number of labeled anomalies for enforcing statistically significant deviations between abnormal and normal nodes on a network.
We equip the proposed GDN with a new cross-network meta-learning algorithm to realize few-shot network anomaly detection.
arXiv Detail & Related papers (2021-02-22T16:42:37Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Machine Learning based Anomaly Detection for 5G Networks [0.0]
This paper proposes SDS (Software Defined Security) as a means to provide an automated, flexible and scalable network defence system.
SDS will harness current advances in machine learning to design a CNN (Convolutional Neural Network) using NAS (Neural Architecture Search) to detect anomalous network traffic.
arXiv Detail & Related papers (2020-03-07T00:17:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.