SCGNet-Stacked Convolution with Gated Recurrent Unit Network for Cyber Network Intrusion Detection and Intrusion Type Classification
- URL: http://arxiv.org/abs/2410.21873v1
- Date: Tue, 29 Oct 2024 09:09:08 GMT
- Title: SCGNet-Stacked Convolution with Gated Recurrent Unit Network for Cyber Network Intrusion Detection and Intrusion Type Classification
- Authors: Rajana Akter, Shahnure Rabib, Rahul Deb Mohalder, Laboni Paul, Ferdous Bin Ali,
- Abstract summary: Intrusion detection systems (IDSs) are far from being able to quickly and efficiently identify complex and varied network attacks.
The SCGNet is a novel deep learning architecture that we propose in this study.
It exhibits promising results on the NSL-KDD dataset in both task, network attack detection, and attack type classification with 99.76% and 98.92% accuracy, respectively.
- Score: 0.0
- License:
- Abstract: Intrusion detection system (IDS) is a piece of hardware or software that looks for malicious activity or policy violations in a network. It looks for malicious activity or security flaws on a network or system. IDS protects hosts or networks by looking for indications of known attacks or deviations from normal behavior (Network-based intrusion detection system, or NIDS for short). Due to the rapidly increasing amount of network data, traditional intrusion detection systems (IDSs) are far from being able to quickly and efficiently identify complex and varied network attacks, especially those linked to low-frequency attacks. The SCGNet (Stacked Convolution with Gated Recurrent Unit Network) is a novel deep learning architecture that we propose in this study. It exhibits promising results on the NSL-KDD dataset in both task, network attack detection, and attack type classification with 99.76% and 98.92% accuracy, respectively. We have also introduced a general data preprocessing pipeline that is easily applicable to other similar datasets. We have also experimented with conventional machine-learning techniques to evaluate the performance of the data processing pipeline.
Related papers
- Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - OMINACS: Online ML-Based IoT Network Attack Detection and Classification
System [0.0]
This paper proposes an online attack detection and network traffic classification system.
It combines stream Machine Learning, Deep Learning, and Ensemble Learning technique.
It can detect the presence of malicious traffic flows and classify them according to the type of attack they represent.
arXiv Detail & Related papers (2023-02-18T04:06:24Z) - NetSentry: A Deep Learning Approach to Detecting Incipient Large-scale
Network Attacks [9.194664029847019]
We show how to use Machine Learning for Network Intrusion Detection (NID) in a principled way.
We propose NetSentry, perhaps the first of its kind NIDS that builds on Bi-ALSTM, an original ensemble of sequential neural models.
We demonstrate F1 score gains above 33% over the state-of-the-art, as well as up to 3 times higher rates of detecting attacks such as XSS and web bruteforce.
arXiv Detail & Related papers (2022-02-20T17:41:02Z) - Early Detection of Network Attacks Using Deep Learning [0.0]
A network intrusion detection system (IDS) is a tool used for identifying unauthorized and malicious behavior by observing the network traffic.
We propose an end-to-end early intrusion detection system to prevent network attacks before they could cause any more damage to the system under attack.
arXiv Detail & Related papers (2022-01-27T16:35:37Z) - Robust Self-Ensembling Network for Hyperspectral Image Classification [38.84831094095329]
We propose a robust self-ensembling network (RSEN) to address this problem.
The proposed RSEN consists of twoworks including a base network and an ensemble network.
We show that the proposed algorithm can yield competitive performance compared with the state-of-the-art methods.
arXiv Detail & Related papers (2021-04-08T13:33:14Z) - TANTRA: Timing-Based Adversarial Network Traffic Reshaping Attack [46.79557381882643]
We present TANTRA, a novel end-to-end Timing-based Adversarial Network Traffic Reshaping Attack.
Our evasion attack utilizes a long short-term memory (LSTM) deep neural network (DNN) which is trained to learn the time differences between the target network's benign packets.
TANTRA achieves an average success rate of 99.99% in network intrusion detection system evasion.
arXiv Detail & Related papers (2021-03-10T19:03:38Z) - Few-shot Network Anomaly Detection via Cross-network Meta-learning [45.8111239825361]
We propose a new family of graph neural networks -- Graph Deviation Networks (GDN)
GDN can leverage a small number of labeled anomalies for enforcing statistically significant deviations between abnormal and normal nodes on a network.
We equip the proposed GDN with a new cross-network meta-learning algorithm to realize few-shot network anomaly detection.
arXiv Detail & Related papers (2021-02-22T16:42:37Z) - Deep Learning based Covert Attack Identification for Industrial Control
Systems [5.299113288020827]
We develop a data-driven framework that can be used to detect, diagnose, and localize a type of cyberattack called covert attacks on smart grids.
The framework has a hybrid design that combines an autoencoder, a recurrent neural network (RNN) with a Long-Short-Term-Memory layer, and a Deep Neural Network (DNN)
arXiv Detail & Related papers (2020-09-25T17:48:43Z) - Automating Botnet Detection with Graph Neural Networks [106.24877728212546]
Botnets are now a major source for many network attacks, such as DDoS attacks and spam.
In this paper, we consider the neural network design challenges of using modern deep learning techniques to learn policies for botnet detection automatically.
arXiv Detail & Related papers (2020-03-13T15:34:33Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z) - Pelican: A Deep Residual Network for Network Intrusion Detection [7.562843347215287]
We propose a deep neural network, Pelican, that is built upon specially-designed residual blocks.
Pelican can achieve a high attack detection performance while keeping a much low false alarm rate.
arXiv Detail & Related papers (2020-01-19T05:07:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.