論文の概要: Accounting for Dependencies in Deep Learning Based Multiple Instance
Learning for Whole Slide Imaging
- arxiv url: http://arxiv.org/abs/2111.01556v1
- Date: Mon, 1 Nov 2021 06:50:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-04 02:28:00.977057
- Title: Accounting for Dependencies in Deep Learning Based Multiple Instance
Learning for Whole Slide Imaging
- Title(参考訳): 全スライドイメージングのための深層学習に基づく複数インスタンス学習の依存性の会計
- Authors: Andriy Myronenko, Ziyue Xu, Dong Yang, Holger Roth, Daguang Xu
- Abstract要約: 多重インスタンス学習(MIL)は、スライド画像全体(WSI)を分類するための鍵となるアルゴリズムである。
ヒストロジー WSI には数十億ピクセルのピクセルがあり、膨大な計算とアノテーションの課題を生み出す。
本稿では,インスタンスの擬似ラベルに基づくインスタンス単位の損失関数を提案する。
- 参考スコア(独自算出の注目度): 8.712556146101953
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multiple instance learning (MIL) is a key algorithm for classification of
whole slide images (WSI). Histology WSIs can have billions of pixels, which
create enormous computational and annotation challenges. Typically, such images
are divided into a set of patches (a bag of instances), where only bag-level
class labels are provided. Deep learning based MIL methods calculate instance
features using convolutional neural network (CNN). Our proposed approach is
also deep learning based, with the following two contributions: Firstly, we
propose to explicitly account for dependencies between instances during
training by embedding self-attention Transformer blocks to capture dependencies
between instances. For example, a tumor grade may depend on the presence of
several particular patterns at different locations in WSI, which requires to
account for dependencies between patches. Secondly, we propose an instance-wise
loss function based on instance pseudo-labels. We compare the proposed
algorithm to multiple baseline methods, evaluate it on the PANDA challenge
dataset, the largest publicly available WSI dataset with over 11K images, and
demonstrate state-of-the-art results.
- Abstract(参考訳): 多重インスタンス学習(MIL)は、スライド画像全体(WSI)を分類するための重要なアルゴリズムである。
ヒストロジー WSI には数十億ピクセルのピクセルがあり、膨大な計算とアノテーションの課題を生み出す。
通常、このようなイメージは、バッグレベルのクラスラベルのみを提供する一連のパッチ(インスタンスの袋)に分割される。
ディープラーニングに基づくMIL手法は、畳み込みニューラルネットワーク(CNN)を用いてインスタンス特徴を算出する。
まず、自己注意型トランスフォーマーブロックを埋め込んでインスタンス間の依存関係をキャプチャすることで、トレーニング中のインスタンス間の依存関係を明示的に説明することを提案します。
例えば、腫瘍のグレードは、wsi内の異なる場所にあるいくつかの特定のパターンの存在に依存し、パッチ間の依存関係を考慮しなければならない。
次に,インスタンス擬似ラベルに基づくインスタンス分割損失関数を提案する。
提案手法を複数のベースライン法と比較し,1k 以上の画像を持つ最大で公開可能な wsi データセット panda challenge データセット上で評価し,最新の結果を示す。
関連論文リスト
- MamMIL: Multiple Instance Learning for Whole Slide Images with State Space Models [56.37780601189795]
本稿では,WSI分析のためのフレームワークMamMILを提案する。
私たちは各WSIを非指向グラフとして表現します。
マンバが1次元シーケンスしか処理できない問題に対処するために、トポロジ対応の走査機構を提案する。
論文 参考訳(メタデータ) (2024-03-08T09:02:13Z) - RoFormer for Position Aware Multiple Instance Learning in Whole Slide
Image Classification [0.0]
全スライド画像(WSI)分類は、計算病理学において重要な課題である。
現在の手法は、凍結した特徴抽出器を備えたMIL(Multiple-instance Learning)モデルに依存している。
本手法は,弱い教師付き分類タスクにおいて,最先端のMILモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-10-03T09:59:59Z) - Self-similarity Driven Scale-invariant Learning for Weakly Supervised
Person Search [66.95134080902717]
自己相似性駆動型スケール不変学習(SSL)という新しいワンステップフレームワークを提案する。
本稿では,ネットワークを前景と学習スケール不変の機能に集中させるための,マルチスケール・エクステンプラー・ブランチを提案する。
PRWおよびCUHK-SYSUデータベースの実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2023-02-25T04:48:11Z) - Hierarchical Transformer for Survival Prediction Using Multimodality
Whole Slide Images and Genomics [63.76637479503006]
下流タスクのためのギガピクセルレベルのスライド病理画像(WSI)の良質な表現を学習することが重要である。
本稿では,病理画像と対応する遺伝子間の階層的マッピングを学習する階層型マルチモーダルトランスフォーマーフレームワークを提案する。
より優れたWSI表現能力を維持しながら、ベンチマーク手法と比較してGPUリソースが少ないアーキテクチャです。
論文 参考訳(メタデータ) (2022-11-29T23:47:56Z) - Multiple Instance Learning via Iterative Self-Paced Supervised
Contrastive Learning [22.07044031105496]
バッグレベルのラベルのみが利用可能な場合の個々のインスタンスの学習表現は、MIL(Multiple Case Learning)の課題である。
我々は、MIL表現のための新しいフレームワーク、Iterative Self-paced Supervised Contrastive Learning (ItS2CLR)を提案する。
バッグレベルのラベルから派生したインスタンスレベルの擬似ラベルを活用することで、学習された表現を改善する。
論文 参考訳(メタデータ) (2022-10-17T21:43:32Z) - Boosting Few-shot Fine-grained Recognition with Background Suppression
and Foreground Alignment [53.401889855278704]
FS-FGR (Few-shot Fine-fine Recognition) は、限られたサンプルの助けを借りて、新しいきめ細かなカテゴリを認識することを目的としている。
本研究では,背景アクティベーション抑制 (BAS) モジュール,フォアグラウンドオブジェクトアライメント (FOA) モジュール,および局所的局所的(L2L) 類似度測定器からなる2段階の背景アライメントとフォアグラウンドアライメントフレームワークを提案する。
複数のベンチマークで行った実験により,提案手法は既存の最先端技術よりも大きなマージンで優れていることが示された。
論文 参考訳(メタデータ) (2022-10-04T07:54:40Z) - ReMix: A General and Efficient Framework for Multiple Instance Learning
based Whole Slide Image Classification [14.78430890440035]
ワイルスライド画像(WSI)分類は、ギガピクセル解像度画像とスライドレベルのラベルを扱うために弱教師付き多重インスタンス学習(MIL)法に依存することが多い。
MILに基づくWSI分類のための汎用的で効率的なフレームワークであるReMixを提案する。
論文 参考訳(メタデータ) (2022-07-05T04:21:35Z) - Multi-level Second-order Few-shot Learning [111.0648869396828]
教師付きまたは教師なしの少数ショット画像分類と少数ショット動作認識のためのマルチレベル2次数列学習ネットワーク(MlSo)を提案する。
我々は、パワーノーマライズされた二階学習者ストリームと、複数のレベルの視覚的抽象化を表現する機能を組み合わせた、いわゆる2階学習者ストリームを活用している。
我々は,Omniglot, mini-ImageNet, tiered-ImageNet, Open MIC, CUB Birds, Stanford Dogs, Cars, HMDB51, UCF101, mini-MITなどのアクション認識データセットなどの標準データセットに対して,優れた結果を示す。
論文 参考訳(メタデータ) (2022-01-15T19:49:00Z) - Deep Relational Metric Learning [84.95793654872399]
本稿では,画像クラスタリングと検索のためのディープリレーショナルメトリック学習フレームワークを提案する。
我々は、クラス間分布とクラス内分布の両方をモデル化するために、異なる側面から画像を特徴付ける特徴のアンサンブルを学ぶ。
広く使われているCUB-200-2011、Cars196、Stanford Online Productsデータセットの実験は、我々のフレームワークが既存の深層学習方法を改善し、非常に競争力のある結果をもたらすことを示した。
論文 参考訳(メタデータ) (2021-08-23T09:31:18Z) - Sparse convolutional context-aware multiple instance learning for whole
slide image classification [7.18791111462057]
スライドのスライド全体は、診断を導く組織と、多くの疾患に対する治療の選択に関する多くの手がかりを示している。
この問題を解決するために、MIL(Multiple Case Learning)は、スライドイメージ全体ではなくパッチのバッグを分類する。
提案手法は,sparse-input convolutional-based mil戦略によるパッチの空間情報の統合によるパラダイムシフトを示す。
論文 参考訳(メタデータ) (2021-05-06T14:46:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。