論文の概要: Elucidating Noisy Data via Uncertainty-Aware Robust Learning
- arxiv url: http://arxiv.org/abs/2111.01632v1
- Date: Tue, 2 Nov 2021 14:44:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-03 12:48:24.216304
- Title: Elucidating Noisy Data via Uncertainty-Aware Robust Learning
- Title(参考訳): 不確実性を考慮したロバスト学習による雑音データの解明
- Authors: Jeongeun Park, Seungyoun Shin, Sangheum Hwang, Sungjoon Choi
- Abstract要約: 提案手法は,汚れたデータセットからクリーンなターゲット分布を学習することができる。
我々は,2種類の予測不確かさを区別できる混合専門家モデルを活用する。
汚職パターン推定の性能を評価するための新しい検証手法を提案する。
- 参考スコア(独自算出の注目度): 9.711326718689495
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robust learning methods aim to learn a clean target distribution from noisy
and corrupted training data where a specific corruption pattern is often
assumed a priori. Our proposed method can not only successfully learn the clean
target distribution from a dirty dataset but also can estimate the underlying
noise pattern. To this end, we leverage a mixture-of-experts model that can
distinguish two different types of predictive uncertainty, aleatoric and
epistemic uncertainty. We show that the ability to estimate the uncertainty
plays a significant role in elucidating the corruption patterns as these two
objectives are tightly intertwined. We also present a novel validation scheme
for evaluating the performance of the corruption pattern estimation. Our
proposed method is extensively assessed in terms of both robustness and
corruption pattern estimation through a number of domains, including computer
vision and natural language processing.
- Abstract(参考訳): ロバストな学習方法は、特定の汚いパターンが優先される場合、ノイズや破損したトレーニングデータからクリーンな目標分布を学習することを目的としている。
提案手法は,汚れたデータセットからクリーンなターゲット分布を学習するだけでなく,基礎となるノイズパターンを推定できる。
この目的のために、我々は2種類の予測不確実性、アレタリックおよびエピステマティック不確実性を区別できる試験混合モデルを利用する。
これら2つの目的が密接に絡み合っているため,不確実性を推定する能力は,汚職パターンの解明に重要な役割を果たすことを示す。
また,汚損パターン推定の性能を評価するための新しい検証手法を提案する。
提案手法は,コンピュータビジョンや自然言語処理を含む多くの領域において,ロバスト性および汚いパターン推定の両面から広く評価されている。
関連論文リスト
- Probabilistic Contrastive Learning with Explicit Concentration on the Hypersphere [3.572499139455308]
本稿では,球面空間に表現を埋め込むことにより,不確実性を比較学習に取り入れる新たな視点を提案する。
我々は、濃度パラメータであるカッパを直接解釈可能な尺度として利用し、不確実性を明示的に定量化する。
論文 参考訳(メタデータ) (2024-05-26T07:08:13Z) - An Ambiguity Measure for Recognizing the Unknowns in Deep Learning [0.0]
深層ニューラルネットワークの学習範囲から, 深部ニューラルネットワークの理解について検討する。
任意のモデルに対する入力のあいまいさを定量化する尺度を提案する。
論文 参考訳(メタデータ) (2023-12-11T02:57:12Z) - Distributional Shift-Aware Off-Policy Interval Estimation: A Unified
Error Quantification Framework [8.572441599469597]
本研究では、無限水平マルコフ決定過程の文脈における高信頼オフ政治評価について検討する。
目的は、未知の行動ポリシーから事前に収集されたオフラインデータのみを用いて、対象の政策値に対する信頼区間(CI)を確立することである。
提案アルゴリズムは, 非線形関数近似設定においても, サンプル効率, 誤差ローバスト, 既知収束性を示す。
論文 参考訳(メタデータ) (2023-09-23T06:35:44Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
本稿では,データあいまいさの予測不確実性を推定するためのポストホックサンプリング手法を提案する。
この方法は与えられた入力に対して異なる可算出力を生成することができ、予測分布のパラメトリック形式を仮定しない。
論文 参考訳(メタデータ) (2023-08-03T12:43:21Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
不確実性推定は、ディープラーニングを実用アプリケーションで信頼できるものにする鍵となる要素である。
漁業情報に基づくエビデンシャルディープラーニング(mathcalI$-EDL)を提案する。
特に,各サンプルが有する証拠の情報量を測定するためにFisher Information Matrix (FIM)を導入し,目的的損失項を動的に重み付けし,不確実なクラスの表現学習に集中させる。
論文 参考訳(メタデータ) (2023-03-03T16:12:59Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UALは、データ不確実性とモデル不確実性を同時に考慮し、信頼性に配慮した予測を提供することを目的としている。
データ不確実性はサンプル固有のノイズを捕捉する」一方、モデル不確実性はサンプルの予測に対するモデルの信頼を表現している。
論文 参考訳(メタデータ) (2022-10-24T17:53:20Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Adversarial Attack for Uncertainty Estimation: Identifying Critical
Regions in Neural Networks [0.0]
本稿では,ニューラルネットワークにおける決定境界付近のデータポイントをキャプチャする手法を提案する。
不確実性推定は、モデルのパラメータに摂動を与える以前の研究とは異なり、入力摂動から導かれる。
提案手法は,他の手法よりも優れた性能を示し,機械学習におけるモデル不確実性を捉えるリスクが低いことを示した。
論文 参考訳(メタデータ) (2021-07-15T21:30:26Z) - An Uncertainty Estimation Framework for Probabilistic Object Detection [5.83620245905973]
本稿では,物体検出における不確実性を推定する2つの一般的な手法を組み合わせた新しい手法を提案する。
我々のフレームワークは、予測の不確実性を近似するために、深いアンサンブルとモンテカルロのドロップアウトを利用する。
論文 参考訳(メタデータ) (2021-06-28T22:29:59Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。