Designing Inherently Interpretable Machine Learning Models
- URL: http://arxiv.org/abs/2111.01743v1
- Date: Tue, 2 Nov 2021 17:06:02 GMT
- Title: Designing Inherently Interpretable Machine Learning Models
- Authors: Agus Sudjianto and Aijun Zhang
- Abstract summary: Inherently IML models should be adopted because of their transparency and explainability.
Black-box models with model-agnostic explainability can be more difficult to defend under regulatory scrutiny.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interpretable machine learning (IML) becomes increasingly important in highly
regulated industry sectors related to the health and safety or fundamental
rights of human beings. In general, the inherently IML models should be adopted
because of their transparency and explainability, while black-box models with
model-agnostic explainability can be more difficult to defend under regulatory
scrutiny. For assessing inherent interpretability of a machine learning model,
we propose a qualitative template based on feature effects and model
architecture constraints. It provides the design principles for
high-performance IML model development, with examples given by reviewing our
recent works on ExNN, GAMI-Net, SIMTree, and the Aletheia toolkit for local
linear interpretability of deep ReLU networks. We further demonstrate how to
design an interpretable ReLU DNN model with evaluation of conceptual soundness
for a real case study of predicting credit default in home lending. We hope
that this work will provide a practical guide of developing inherently IML
models in high risk applications in banking industry, as well as other sectors.
Related papers
- Large Language Model-Based Interpretable Machine Learning Control in Building Energy Systems [3.0309252269809264]
This paper investigates and explores Interpretable Machine Learning (IML), a branch of Machine Learning (ML) that enhances transparency and understanding of models and their inferences.
We develop an innovative framework that combines the principles of Shapley values and the in-context learning feature of Large Language Models (LLMs)
The paper presents a case study to demonstrate the feasibility of the developed IML framework for model predictive control-based precooling under demand response events in a virtual testbed.
arXiv Detail & Related papers (2024-02-14T21:19:33Z) - Stable and Interpretable Deep Learning for Tabular Data: Introducing
InterpreTabNet with the Novel InterpreStability Metric [4.362293468843233]
We introduce InterpreTabNet, a model designed to enhance both classification accuracy and interpretability.
We also present a novel evaluation metric, InterpreStability, which quantifies the stability of a model's interpretability.
arXiv Detail & Related papers (2023-10-04T15:04:13Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
This paper introduces ASTxplainer, an explainability method specific to Large Language Models for code.
At its core, ASTxplainer provides an automated method for aligning token predictions with AST nodes.
We perform an empirical evaluation on 12 popular LLMs for code using a curated dataset of the most popular GitHub projects.
arXiv Detail & Related papers (2023-08-07T18:50:57Z) - Minimal Value-Equivalent Partial Models for Scalable and Robust Planning
in Lifelong Reinforcement Learning [56.50123642237106]
Common practice in model-based reinforcement learning is to learn models that model every aspect of the agent's environment.
We argue that such models are not particularly well-suited for performing scalable and robust planning in lifelong reinforcement learning scenarios.
We propose new kinds of models that only model the relevant aspects of the environment, which we call "minimal value-minimal partial models"
arXiv Detail & Related papers (2023-01-24T16:40:01Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP)
What further sets these models apart is the massive amounts of world knowledge they internalize during pretraining.
How the model's world knowledge interacts with the factual information presented in the context remains under explored.
arXiv Detail & Related papers (2022-11-09T18:58:29Z) - Scientific Inference With Interpretable Machine Learning: Analyzing Models to Learn About Real-World Phenomena [4.312340306206884]
Interpretable machine learning offers a solution by analyzing models holistically to derive interpretations.
Current IML research is focused on auditing ML models rather than leveraging them for scientific inference.
We present a framework for designing IML methods-termed 'property descriptors' that illuminate not just the model, but also the phenomenon it represents.
arXiv Detail & Related papers (2022-06-11T10:13:21Z) - GAM(e) changer or not? An evaluation of interpretable machine learning
models based on additive model constraints [5.783415024516947]
This paper investigates a series of intrinsically interpretable machine learning models.
We evaluate the prediction qualities of five GAMs as compared to six traditional ML models.
arXiv Detail & Related papers (2022-04-19T20:37:31Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
Explainable Artificial Intelligence (XAI) is an emerging research field bringing transparency to highly complex machine learning (ML) models.
This paper offers a comprehensive overview over techniques that apply XAI practically for improving various properties of ML models.
We show empirically through experiments on toy and realistic settings how explanations can help improve properties such as model generalization ability or reasoning.
arXiv Detail & Related papers (2022-03-15T15:44:28Z) - Analyzing a Caching Model [7.378507865227209]
Interpretability remains a major obstacle for adoption in real-world deployments.
By analyzing a state-of-the-art caching model, we provide evidence that the model has learned concepts beyond simple statistics.
arXiv Detail & Related papers (2021-12-13T19:53:07Z) - Towards Interpretable Deep Learning Models for Knowledge Tracing [62.75876617721375]
We propose to adopt the post-hoc method to tackle the interpretability issue for deep learning based knowledge tracing (DLKT) models.
Specifically, we focus on applying the layer-wise relevance propagation (LRP) method to interpret RNN-based DLKT model.
Experiment results show the feasibility using the LRP method for interpreting the DLKT model's predictions.
arXiv Detail & Related papers (2020-05-13T04:03:21Z) - Explainable Matrix -- Visualization for Global and Local
Interpretability of Random Forest Classification Ensembles [78.6363825307044]
We propose Explainable Matrix (ExMatrix), a novel visualization method for Random Forest (RF) interpretability.
It employs a simple yet powerful matrix-like visual metaphor, where rows are rules, columns are features, and cells are rules predicates.
ExMatrix applicability is confirmed via different examples, showing how it can be used in practice to promote RF models interpretability.
arXiv Detail & Related papers (2020-05-08T21:03:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.