FEM-based Real-Time Simulations of Large Deformations with Probabilistic
Deep Learning
- URL: http://arxiv.org/abs/2111.01867v1
- Date: Tue, 2 Nov 2021 20:05:22 GMT
- Title: FEM-based Real-Time Simulations of Large Deformations with Probabilistic
Deep Learning
- Authors: Saurabh Deshpande, Jakub Lengiewicz and St\'ephane P.A. Bordas
- Abstract summary: We propose a highly efficient deep-learning surrogate framework that is able to predict the response of hyper-elastic bodies under load.
The framework takes the form of special convolutional neural network architecture, so-called U-Net, which is trained with force-displacement data.
- Score: 1.2617078020344616
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For many engineering applications, such as real-time simulations or control,
conventional solution techniques of the underlying nonlinear problems are
usually computationally too expensive. In this work, we propose a highly
efficient deep-learning surrogate framework that is able to predict the
response of hyper-elastic bodies under load. The surrogate model takes the form
of special convolutional neural network architecture, so-called U-Net, which is
trained with force-displacement data obtained with the finite element method.
We propose deterministic- and probabilistic versions of the framework and study
it for three benchmark problems. In particular, we check the capabilities of
the Maximum Likelihood and the Variational Bayes Inference formulations to
assess the confidence intervals of solutions.
Related papers
- Optimal design of experiments in the context of machine-learning inter-atomic potentials: improving the efficiency and transferability of kernel based methods [0.7234862895932991]
Data-driven, machine learning (ML) models of atomistic interactions can relate nuanced aspects of atomic arrangements into predictions of energies and forces.
The main challenge stems from the fact that descriptors of chemical environments are often sparse high-dimensional objects without a well-defined continuous metric.
We will demonstrate that classical concepts of statistical planning of experiments and optimal design can help to mitigate such problems at a relatively low computational cost.
arXiv Detail & Related papers (2024-05-14T14:14:23Z) - Deep Learning-based surrogate models for parametrized PDEs: handling
geometric variability through graph neural networks [0.0]
This work explores the potential usage of graph neural networks (GNNs) for the simulation of time-dependent PDEs.
We propose a systematic strategy to build surrogate models based on a data-driven time-stepping scheme.
We show that GNNs can provide a valid alternative to traditional surrogate models in terms of computational efficiency and generalization to new scenarios.
arXiv Detail & Related papers (2023-08-03T08:14:28Z) - Neural Fields with Hard Constraints of Arbitrary Differential Order [61.49418682745144]
We develop a series of approaches for enforcing hard constraints on neural fields.
The constraints can be specified as a linear operator applied to the neural field and its derivatives.
Our approaches are demonstrated in a wide range of real-world applications.
arXiv Detail & Related papers (2023-06-15T08:33:52Z) - Physics-aware deep learning framework for linear elasticity [0.0]
The paper presents an efficient and robust data-driven deep learning (DL) computational framework for linear continuum elasticity problems.
For an accurate representation of the field variables, a multi-objective loss function is proposed.
Several benchmark problems including the Airimaty solution to elasticity and the Kirchhoff-Love plate problem are solved.
arXiv Detail & Related papers (2023-02-19T20:33:32Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
We explore training efficient and robust AI-enhanced numerical solvers with a small data size by mitigating intrinsic noise disturbances.
We first analyze the ability of the self-attention mechanism to regulate noise in supervised learning and then propose a simple-yet-effective numerical solver, Attr, which introduces an additive self-attention mechanism to the numerical solution of differential equations.
arXiv Detail & Related papers (2023-02-05T01:39:21Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Deep Efficient Continuous Manifold Learning for Time Series Modeling [11.876985348588477]
A symmetric positive definite matrix is being studied in computer vision, signal processing, and medical image analysis.
In this paper, we propose a framework to exploit a diffeomorphism mapping between Riemannian manifold and a Cholesky space.
For dynamic modeling of time-series data, we devise a continuous manifold learning method by systematically integrating a manifold ordinary differential equation and a gated recurrent neural network.
arXiv Detail & Related papers (2021-12-03T01:38:38Z) - DeepPhysics: a physics aware deep learning framework for real-time
simulation [0.0]
We propose a solution to simulate hyper-elastic materials using a data-driven approach.
A neural network is trained to learn the non-linear relationship between boundary conditions and the resulting displacement field.
The results show that our network architecture trained with a limited amount of data can predict the displacement field in less than a millisecond.
arXiv Detail & Related papers (2021-09-17T12:15:47Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
We consider data-driven optimization problems where one must maximize a function given only queries at a fixed set of points.
This problem setting emerges in many domains where function evaluation is a complex and expensive process.
We propose a tractable approximation that allows us to scale our method to high-capacity neural network models.
arXiv Detail & Related papers (2021-02-16T06:04:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.