On Robust Numerical Solver for ODE via Self-Attention Mechanism
- URL: http://arxiv.org/abs/2302.10184v1
- Date: Sun, 5 Feb 2023 01:39:21 GMT
- Title: On Robust Numerical Solver for ODE via Self-Attention Mechanism
- Authors: Zhongzhan Huang, Mingfu Liang and Liang Lin
- Abstract summary: We explore training efficient and robust AI-enhanced numerical solvers with a small data size by mitigating intrinsic noise disturbances.
We first analyze the ability of the self-attention mechanism to regulate noise in supervised learning and then propose a simple-yet-effective numerical solver, Attr, which introduces an additive self-attention mechanism to the numerical solution of differential equations.
- Score: 82.95493796476767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the development of deep learning techniques, AI-enhanced numerical
solvers are expected to become a new paradigm for solving differential
equations due to their versatility and effectiveness in alleviating the
accuracy-speed trade-off in traditional numerical solvers. However, this
paradigm still inevitably requires a large amount of high-quality data, whose
acquisition is often very expensive in natural science and engineering
problems. Therefore, in this paper, we explore training efficient and robust
AI-enhanced numerical solvers with a small data size by mitigating intrinsic
noise disturbances. We first analyze the ability of the self-attention
mechanism to regulate noise in supervised learning and then propose a
simple-yet-effective numerical solver, AttSolver, which introduces an additive
self-attention mechanism to the numerical solution of differential equations
based on the dynamical system perspective of the residual neural network. Our
results on benchmarks, ranging from high-dimensional problems to chaotic
systems, demonstrate the effectiveness of AttSolver in generally improving the
performance of existing traditional numerical solvers without any elaborated
model crafting. Finally, we analyze the convergence, generalization, and
robustness of the proposed method experimentally and theoretically.
Related papers
- Harnessing physics-informed operators for high-dimensional reliability analysis problems [0.8192907805418583]
Reliability analysis is a formidable task, particularly in systems with a large number of parameters.
Conventional methods for quantifying reliability often rely on extensive simulations or experimental data.
We show that physics-informed operator can seamlessly solve high-dimensional reliability analysis problems with reasonable accuracy.
arXiv Detail & Related papers (2024-09-07T04:52:03Z) - Adversarial Learning for Neural PDE Solvers with Sparse Data [4.226449585713182]
This study introduces a universal learning strategy for neural network PDEs, named Systematic Model Augmentation for Robust Training.
By focusing on challenging and improving the model's weaknesses, SMART reduces generalization error during training under data-scarce conditions.
arXiv Detail & Related papers (2024-09-04T04:18:25Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Physical Information Neural Networks for Solving High-index
Differential-algebraic Equation Systems Based on Radau Methods [10.974537885042613]
We propose a PINN computational framework, combined Radau IIA numerical method with a neural network structure via the attention mechanisms, to directly solve high-index DAEs.
Our method exhibits excellent computational accuracy and strong generalization capabilities, providing a feasible approach for the high-precision solution of larger-scale DAEs.
arXiv Detail & Related papers (2023-10-19T15:57:10Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
We introduce a deep learning-based corrector called Neural Vector (NeurVec)
NeurVec can compensate for integration errors and enable larger time step sizes in simulations.
Our experiments on a variety of complex dynamical system benchmarks demonstrate that NeurVec exhibits remarkable generalization capability.
arXiv Detail & Related papers (2022-08-07T09:02:18Z) - Learning Sparse Nonlinear Dynamics via Mixed-Integer Optimization [3.7565501074323224]
We propose an exact formulation of the SINDyDy problem using mixed-integer optimization (MIO) to solve the sparsity constrained regression problem to provable optimality in seconds.
We illustrate the dramatic improvement of our approach in accurate model discovery while being more sample efficient, robust to noise, and flexible in accommodating physical constraints.
arXiv Detail & Related papers (2022-06-01T01:43:45Z) - Interfacing Finite Elements with Deep Neural Operators for Fast
Multiscale Modeling of Mechanics Problems [4.280301926296439]
In this work, we explore the idea of multiscale modeling with machine learning and employ DeepONet, a neural operator, as an efficient surrogate of the expensive solver.
DeepONet is trained offline using data acquired from the fine solver for learning the underlying and possibly unknown fine-scale dynamics.
We present various benchmarks to assess accuracy and speedup, and in particular we develop a coupling algorithm for a time-dependent problem.
arXiv Detail & Related papers (2022-02-25T20:46:08Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Fast Distributionally Robust Learning with Variance Reduced Min-Max
Optimization [85.84019017587477]
Distributionally robust supervised learning is emerging as a key paradigm for building reliable machine learning systems for real-world applications.
Existing algorithms for solving Wasserstein DRSL involve solving complex subproblems or fail to make use of gradients.
We revisit Wasserstein DRSL through the lens of min-max optimization and derive scalable and efficiently implementable extra-gradient algorithms.
arXiv Detail & Related papers (2021-04-27T16:56:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.