Discovering Supply Chain Links with Augmented Intelligence
- URL: http://arxiv.org/abs/2111.01878v1
- Date: Tue, 2 Nov 2021 20:30:14 GMT
- Title: Discovering Supply Chain Links with Augmented Intelligence
- Authors: Achintya Gopal, Chunho Chang
- Abstract summary: In this paper, we tackle the problem of predicting previously unknown suppliers and customers using graph neural networks (GNNs)
We show strong performance in finding previously unknown connections by combining the predictions of our model and the domain expertise of supply chain analysts.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the key components in analyzing the risk of a company is understanding
a company's supply chain. Supply chains are constantly disrupted, whether by
tariffs, pandemics, severe weather, etc. In this paper, we tackle the problem
of predicting previously unknown suppliers and customers of companies using
graph neural networks (GNNs) and show strong performance in finding previously
unknown connections by combining the predictions of our model and the domain
expertise of supply chain analysts.
Related papers
- Enhancing Supply Chain Visibility with Knowledge Graphs and Large Language Models [49.898152180805454]
This paper presents a novel framework leveraging Knowledge Graphs (KGs) and Large Language Models (LLMs) to enhance supply chain visibility.
Our zero-shot, LLM-driven approach automates the extraction of supply chain information from diverse public sources.
With high accuracy in NER and RE tasks, it provides an effective tool for understanding complex, multi-tiered supply networks.
arXiv Detail & Related papers (2024-08-05T17:11:29Z) - Provable Robustness of (Graph) Neural Networks Against Data Poisoning and Backdoor Attacks [50.87615167799367]
We certify Graph Neural Networks (GNNs) against poisoning attacks, including backdoors, targeting the node features of a given graph.
Our framework provides fundamental insights into the role of graph structure and its connectivity on the worst-case behavior of convolution-based and PageRank-based GNNs.
arXiv Detail & Related papers (2024-07-15T16:12:51Z) - Uncertainty in Graph Neural Networks: A Survey [50.63474656037679]
Graph Neural Networks (GNNs) have been extensively used in various real-world applications.
However, the predictive uncertainty of GNNs stemming from diverse sources can lead to unstable and erroneous predictions.
This survey aims to provide a comprehensive overview of the GNNs from the perspective of uncertainty.
arXiv Detail & Related papers (2024-03-11T21:54:52Z) - HKTGNN: Hierarchical Knowledge Transferable Graph Neural Network-based
Supply Chain Risk Assessment [3.439495194421287]
We propose a hierarchical knowledge transferable graph neural network-based (HKTGNN) supply chain risk assessment model.
We embed the supply chain network corresponding to individual goods in the supply chain using the graph embedding module.
Our model outperforms in experiments on a real-world supply chain dataset.
arXiv Detail & Related papers (2023-11-07T00:54:04Z) - A Knowledge Graph Perspective on Supply Chain Resilience [15.028130016717773]
Global crises and regulatory developments require increased supply chain transparency and resilience.
Information about supply chains, especially at the deeper levels, is often intransparent and incomplete.
By connecting different data sources, we model the supply network as a knowledge graph and achieve transparency up to tier-3 suppliers.
arXiv Detail & Related papers (2023-05-15T10:14:30Z) - Will bots take over the supply chain? Revisiting Agent-based supply
chain automation [71.77396882936951]
Agent-based supply chains have been proposed since early 2000; industrial uptake has been lagging.
We find that agent-based technology has matured, and other supporting technologies that are penetrating supply chains are filling in gaps.
For example, the ubiquity of IoT technology helps agents "sense" the state of affairs in a supply chain and opens up new possibilities for automation.
arXiv Detail & Related papers (2021-09-03T18:44:26Z) - Data Considerations in Graph Representation Learning for Supply Chain
Networks [64.72135325074963]
We present a graph representation learning approach to uncover hidden dependency links.
We demonstrate that our representation facilitates state-of-the-art performance on link prediction of a global automotive supply chain network.
arXiv Detail & Related papers (2021-07-22T12:28:15Z) - Temporal-Relational Hypergraph Tri-Attention Networks for Stock Trend
Prediction [45.74513775015998]
We present a collaborative temporal-relational modeling framework for end-to-end stock trend prediction.
A novel hypergraph tri-attention network (HGTAN) is proposed to augment the hypergraph convolutional networks.
In this manner, HGTAN adaptively determines the importance of nodes, hyperedges, and hypergraphs during the information propagation among stocks.
arXiv Detail & Related papers (2021-07-22T02:16:09Z) - The challenges and realities of retailing in a COVID-19 world:
Identifying trending and Vital During Crisis keywords during Covid-19 using
Machine Learning (Austria as a case study) [0.0]
It is recommended to opt for forecasting against trending based benchmark because auditing a future forecast puts more focus on seasonality.
The forecasting models provide with end-to-end, real time oversight of the entire supply chain.
arXiv Detail & Related papers (2021-05-10T18:31:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.