Machine-Learning Identification of Hemodynamics in Coronary Arteries in
the Presence of Stenosis
- URL: http://arxiv.org/abs/2111.01950v1
- Date: Tue, 2 Nov 2021 23:51:06 GMT
- Title: Machine-Learning Identification of Hemodynamics in Coronary Arteries in
the Presence of Stenosis
- Authors: Mohammad Farajtabar, Morsal Momeni Larimi, Mohit Biglarian, Morteza
Miansari
- Abstract summary: An artificial neural network (ANN) model is trained using synthetic data to predict the pressure and velocity within the arterial network.
The efficiency of the model was verified using three real geometries of LAD's vessels.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prediction of the blood flow characteristics is of utmost importance for
understanding the behavior of the blood arterial network, especially in the
presence of vascular diseases such as stenosis. Computational fluid dynamics
(CFD) has provided a powerful and efficient tool to determine these
characteristics including the pressure and velocity fields within the network.
Despite numerous studies in the field, the extremely high computational cost of
CFD has led the researchers to develop new platforms including Machine Learning
approaches that instead provide faster analyses at a much lower cost. In this
study, we put forth a Deep Neural Network framework to predict flow behavior in
a coronary arterial network with different properties in the presence of any
abnormality like stenosis. To this end, an artificial neural network (ANN)
model is trained using synthetic data so that it can predict the pressure and
velocity within the arterial network. The data required to train the neural
network were obtained from the CFD analysis of several geometries of arteries
with specific features in ABAQUS software. Blood pressure drop caused by
stenosis, which is one of the most important factors in the diagnosis of heart
diseases, can be predicted using our proposed model knowing the geometrical and
flow boundary conditions of any section of the coronary arteries. The
efficiency of the model was verified using three real geometries of LAD's
vessels. The proposed approach precisely predicts the hemodynamic behavior of
the blood flow. The average accuracy of the pressure prediction was 98.7% and
the average velocity magnitude accuracy was 93.2%. According to the results of
testing the model on three patient-specific geometries, model can be considered
as an alternative to finite element methods as well as other hard-to-implement
and time-consuming numerical simulations.
Related papers
- Adversarial Contrastive Learning Based Physics-Informed Temporal Networks for Cuffless Blood Pressure Estimation [37.94387581519217]
We introduce a novel physics-informed temporal network(PITN) with adversarial contrastive learning to enable precise BP estimation with very limited data.
We then employ adversarial training to generate extra physiological time series data, improving PITN's robustness in the face of sparse subject-specific data.
arXiv Detail & Related papers (2024-08-16T02:17:21Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Voxel2Hemodynamics: An End-to-end Deep Learning Method for Predicting
Coronary Artery Hemodynamics [24.8579242043367]
Local hemodynamic forces play an important role in determining the functional significance of coronary arterial stenosis.
We propose an end-to-end deep learning framework, which could predict the coronary artery hemodynamics from CCTA images.
arXiv Detail & Related papers (2023-05-30T15:12:52Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Learning Reduced-Order Models for Cardiovascular Simulations with Graph
Neural Networks [1.2643625859899612]
We develop one-dimensional reduced-order models that simulate blood flow dynamics using a graph neural network trained on three-dimensional hemodynamic simulation data.
Our method exhibits superior performance compared to physics-based one-dimensional models, while maintaining high efficiency at inference time.
arXiv Detail & Related papers (2023-03-13T17:32:46Z) - SE(3) symmetry lets graph neural networks learn arterial velocity
estimation from small datasets [3.861633648502351]
Hemodynamic velocity fields in coronary arteries could be the basis of valuable biomarkers for diagnosis, prognosis and treatment planning.
Velocity fields are typically obtained from patient-specific 3D artery models via computational fluid dynamics (CFD)
We propose graph neural networks (GNN) as an efficient black-box surrogate method to estimate 3D velocity fields.
arXiv Detail & Related papers (2023-02-17T09:42:38Z) - Mesh Neural Networks for SE(3)-Equivariant Hemodynamics Estimation on the Artery Wall [13.113110989699571]
We consider the estimation of vector-valued quantities on the wall of three-dimensional geometric artery models.
We employ group equivariant graph convolution in an end-to-end SE(3)-equivariant neural network that operates directly on triangular surface meshes.
We show that our method is powerful enough to accurately predict transient, vector-valued WSS over the cardiac cycle while conditioned on a range of different inflow boundary conditions.
arXiv Detail & Related papers (2022-12-09T18:16:06Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
Collateral circulation results from specialized anastomotic channels which provide oxygenated blood to regions with compromised blood flow.
The actual grading is mostly done through manual inspection of the acquired images.
We present a deep learning approach to predicting collateral flow grading in stroke patients based on radiomic features extracted from MR perfusion data.
arXiv Detail & Related papers (2021-10-24T18:58:40Z) - Simultaneous boundary shape estimation and velocity field de-noising in
Magnetic Resonance Velocimetry using Physics-informed Neural Networks [70.7321040534471]
Magnetic resonance velocimetry (MRV) is a non-invasive technique widely used in medicine and engineering to measure the velocity field of a fluid.
Previous studies have required the shape of the boundary (for example, a blood vessel) to be known a priori.
We present a physics-informed neural network that instead uses the noisy MRV data alone to infer the most likely boundary shape and de-noised velocity field.
arXiv Detail & Related papers (2021-07-16T12:56:09Z) - Deep Implicit Statistical Shape Models for 3D Medical Image Delineation [47.78425002879612]
3D delineation of anatomical structures is a cardinal goal in medical imaging analysis.
Prior to deep learning, statistical shape models that imposed anatomical constraints and produced high quality surfaces were a core technology.
We present deep implicit statistical shape models (DISSMs), a new approach to delineation that marries the representation power of CNNs with the robustness of SSMs.
arXiv Detail & Related papers (2021-04-07T01:15:06Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.