SE(3) symmetry lets graph neural networks learn arterial velocity
estimation from small datasets
- URL: http://arxiv.org/abs/2302.08780v3
- Date: Fri, 4 Aug 2023 06:55:24 GMT
- Title: SE(3) symmetry lets graph neural networks learn arterial velocity
estimation from small datasets
- Authors: Julian Suk, Christoph Brune, Jelmer M. Wolterink
- Abstract summary: Hemodynamic velocity fields in coronary arteries could be the basis of valuable biomarkers for diagnosis, prognosis and treatment planning.
Velocity fields are typically obtained from patient-specific 3D artery models via computational fluid dynamics (CFD)
We propose graph neural networks (GNN) as an efficient black-box surrogate method to estimate 3D velocity fields.
- Score: 3.861633648502351
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hemodynamic velocity fields in coronary arteries could be the basis of
valuable biomarkers for diagnosis, prognosis and treatment planning in
cardiovascular disease. Velocity fields are typically obtained from
patient-specific 3D artery models via computational fluid dynamics (CFD).
However, CFD simulation requires meticulous setup by experts and is
time-intensive, which hinders large-scale acceptance in clinical practice. To
address this, we propose graph neural networks (GNN) as an efficient black-box
surrogate method to estimate 3D velocity fields mapped to the vertices of
tetrahedral meshes of the artery lumen. We train these GNNs on synthetic artery
models and CFD-based ground truth velocity fields. Once the GNN is trained,
velocity estimates in a new and unseen artery can be obtained with 36-fold
speed-up compared to CFD. We demonstrate how to construct an SE(3)-equivariant
GNN that is independent of the spatial orientation of the input mesh and show
how this reduces the necessary amount of training data compared to a baseline
neural network.
Related papers
- Physics-informed graph neural networks for flow field estimation in carotid arteries [2.0437999068326276]
Hemodynamic quantities are valuable biomedical risk factors for cardiovascular pathology such as atherosclerosis.
In this work, we create a surrogate model for hemodynamic flow field estimation, powered by machine learning.
We train graph neural networks that include priors about the underlying symmetries and physics, limiting the amount of data required for training.
This shows that physics-informed graph neural networks can be trained using 4D flow MRI data to estimate blood flow in unseen carotid artery geometries.
arXiv Detail & Related papers (2024-08-13T13:09:28Z) - Transient Hemodynamics Prediction Using an Efficient Octree-Based Deep
Learning Model [0.0]
We present an architecture that is tailored to predict high-resolution (spatial and temporal) velocity fields for complex synthetic vascular geometries.
Compared to CFD simulations, the velocity field can be estimated with a mean absolute error of 0.024 m/s, whereas the run time reduces from several hours on a high-performance cluster to a few seconds on a consumer graphical processing unit.
arXiv Detail & Related papers (2023-02-13T17:56:00Z) - Mesh Neural Networks for SE(3)-Equivariant Hemodynamics Estimation on the Artery Wall [13.113110989699571]
We consider the estimation of vector-valued quantities on the wall of three-dimensional geometric artery models.
We employ group equivariant graph convolution in an end-to-end SE(3)-equivariant neural network that operates directly on triangular surface meshes.
We show that our method is powerful enough to accurately predict transient, vector-valued WSS over the cardiac cycle while conditioned on a range of different inflow boundary conditions.
arXiv Detail & Related papers (2022-12-09T18:16:06Z) - Machine-Learning Identification of Hemodynamics in Coronary Arteries in
the Presence of Stenosis [0.0]
An artificial neural network (ANN) model is trained using synthetic data to predict the pressure and velocity within the arterial network.
The efficiency of the model was verified using three real geometries of LAD's vessels.
arXiv Detail & Related papers (2021-11-02T23:51:06Z) - Mesh convolutional neural networks for wall shear stress estimation in
3D artery models [7.7393800633675465]
We propose to use mesh convolutional neural networks that directly operate on the same finite-element surface mesh as used in CFD.
We show that our flexible deep learning model can accurately predict 3D wall shear stress vectors on this surface mesh.
arXiv Detail & Related papers (2021-09-10T11:32:05Z) - Simultaneous boundary shape estimation and velocity field de-noising in
Magnetic Resonance Velocimetry using Physics-informed Neural Networks [70.7321040534471]
Magnetic resonance velocimetry (MRV) is a non-invasive technique widely used in medicine and engineering to measure the velocity field of a fluid.
Previous studies have required the shape of the boundary (for example, a blood vessel) to be known a priori.
We present a physics-informed neural network that instead uses the noisy MRV data alone to infer the most likely boundary shape and de-noised velocity field.
arXiv Detail & Related papers (2021-07-16T12:56:09Z) - Deep Implicit Statistical Shape Models for 3D Medical Image Delineation [47.78425002879612]
3D delineation of anatomical structures is a cardinal goal in medical imaging analysis.
Prior to deep learning, statistical shape models that imposed anatomical constraints and produced high quality surfaces were a core technology.
We present deep implicit statistical shape models (DISSMs), a new approach to delineation that marries the representation power of CNNs with the robustness of SSMs.
arXiv Detail & Related papers (2021-04-07T01:15:06Z) - Learning Hybrid Representations for Automatic 3D Vessel Centerline
Extraction [57.74609918453932]
Automatic blood vessel extraction from 3D medical images is crucial for vascular disease diagnoses.
Existing methods may suffer from discontinuities of extracted vessels when segmenting such thin tubular structures from 3D images.
We argue that preserving the continuity of extracted vessels requires to take into account the global geometry.
We propose a hybrid representation learning approach to address this challenge.
arXiv Detail & Related papers (2020-12-14T05:22:49Z) - Learning Tubule-Sensitive CNNs for Pulmonary Airway and Artery-Vein
Segmentation in CT [45.93021999366973]
Training convolutional neural networks (CNNs) for segmentation of pulmonary airway, artery, and vein is challenging.
We present a CNNs-based method for accurate airway and artery-vein segmentation in non-contrast computed tomography.
It enjoys superior sensitivity to tenuous peripheral bronchioles, arterioles, and venules.
arXiv Detail & Related papers (2020-12-10T15:56:08Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
We present a novel probabilistic deep learning approach for concurrent 3D surface reconstruction from sparse 2D MR image data and aleatoric uncertainty prediction.
Our method is capable of reconstructing large surface meshes from three quasi-orthogonal MR imaging slices from limited training sets.
arXiv Detail & Related papers (2020-10-05T14:18:52Z) - 4D Spatio-Temporal Convolutional Networks for Object Position Estimation
in OCT Volumes [69.62333053044712]
3D convolutional neural networks (CNNs) have shown promising performance for pose estimation of a marker object using single OCT images.
We extend 3D CNNs to 4D-temporal CNNs to evaluate the impact of additional temporal information for marker object tracking.
arXiv Detail & Related papers (2020-07-02T12:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.