論文の概要: Manipulation of granular materials by learning particle interactions
- arxiv url: http://arxiv.org/abs/2111.02274v1
- Date: Wed, 3 Nov 2021 15:10:53 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-04 14:16:23.810765
- Title: Manipulation of granular materials by learning particle interactions
- Title(参考訳): 粒子相互作用の学習による粒状物質の操作
- Authors: Neea Tuomainen, David Blanco-Mulero, Ville Kyrki
- Abstract要約: 砂や米などの粒状物質の操作は未解決の課題である。
現在のアプローチでは、物質力学を単純化し、粒子間の相互作用を省略する傾向がある。
本稿では,物質と剛体との相互作用のダイナミクスをモデル化するためのグラフベース表現を提案する。
- 参考スコア(独自算出の注目度): 15.089161598719592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Manipulation of granular materials such as sand or rice remains an unsolved
challenge due to the difficulty of modeling material particles interacting with
each other. Current approaches tend to simplify the material dynamics and omit
the interactions between the particles. In this paper, we propose to use a
graph-based representation to model the interaction dynamics of the material
and rigid bodies manipulating it. This allows the planning of manipulation
trajectories to reach a desired configuration of the material. We use a graph
neural network (GNN) to model the particle interactions via message-passing. To
plan manipulation trajectories, we propose to minimise the Wasserstein distance
between the distribution of granular particles and the desired configuration.
We demonstrate that the proposed method is able to pour granular materials into
the desired configuration both in simulated and real scenarios.
- Abstract(参考訳): 砂や米などの粒状物質の操作は、材料粒子の相互作用のモデル化が困難であるため、未解決の課題である。
現在のアプローチは物質力学を単純化し、粒子間の相互作用を省略する傾向がある。
本稿では,物質とそれを操作する剛体との相互作用のダイナミクスをモデル化するために,グラフに基づく表現を提案する。
これにより、操作軌跡の計画がその素材の所望の構成に到達することができる。
グラフニューラルネットワーク(GNN)を用いて、メッセージパッシングによる粒子間相互作用をモデル化する。
そこで本研究では,粒子分布と所望の形状とのワッサーシュタイン距離を最小化することを提案する。
提案手法は, シミュレーションと実シナリオの両方において, 所望の構成に粒状材料を注入できることを実証する。
関連論文リスト
- Learning to Approximate Particle Smoothing Trajectories via Diffusion Generative Models [16.196738720721417]
希少な観測からシステムを学ぶことは、生物学、金融学、物理学など多くの分野において重要である。
本研究では,条件付き粒子フィルタリングと祖先サンプリングと拡散モデルを統合する手法を提案する。
車両追跡や単一セルRNAシークエンシングデータなど,時系列生成とタスクにおけるアプローチを実証する。
論文 参考訳(メタデータ) (2024-06-01T21:54:01Z) - Physics-Encoded Graph Neural Networks for Deformation Prediction under
Contact [87.69278096528156]
ロボット工学では、触覚相互作用における物体の変形を理解することが不可欠である。
本稿では,物理符号化グラフニューラルネットワーク(GNN)を用いた予測手法を提案する。
コードとデータセットを公開して、ロボットシミュレーションと把握の研究を進めました。
論文 参考訳(メタデータ) (2024-02-05T19:21:52Z) - Graph Neural Networks-based Hybrid Framework For Predicting Particle
Crushing Strength [31.05985193732974]
粒子破砕の機械的挙動を特徴付けるためにグラフニューラルネットワークを用いる。
我々は,粒状フラグメントビューにおける粒子破砕強度を予測するために,GNNに基づくハイブリッドフレームワークを考案した。
我々のデータとコードはhttps://github.com/doujiang-zheng/GNN-For-Particle-Crushingで公開されています。
論文 参考訳(メタデータ) (2023-07-26T02:18:04Z) - ParticleSeg3D: A Scalable Out-of-the-Box Deep Learning Segmentation
Solution for Individual Particle Characterization from Micro CT Images in
Mineral Processing and Recycling [1.0442349645874913]
本研究では,異なる材料を含む粒子試料の大規模CT画像から個々の粒子を抽出するインスタンスセグメンテーション法であるParticleSeg3Dを提案する。
我々のアプローチは、強力なnnU-Netフレームワークに基づいて、粒子サイズ正規化を導入し、ボーダーコア表現を用いてインスタンスセグメンテーションを可能にし、さまざまな大きさ、形状、組成の粒子を含む大規模なデータセットで訓練する。
論文 参考訳(メタデータ) (2023-01-30T22:43:46Z) - Transformer with Implicit Edges for Particle-based Physics Simulation [135.77656965678196]
Implicit Edges (TIE) を用いたトランスフォーマーは、素粒子相互作用のリッチなセマンティクスをエッジフリーでキャプチャする。
様々な複雑さと素材の多様な領域におけるモデルの評価を行った。
論文 参考訳(メタデータ) (2022-07-22T03:45:29Z) - NeuroFluid: Fluid Dynamics Grounding with Particle-Driven Neural
Radiance Fields [65.07940731309856]
深層学習は流体のような複雑な粒子系の物理力学をモデル化する大きな可能性を示している。
本稿では,流体力学グラウンドリング(fluid dynamics grounding)として知られる,部分的に観測可能なシナリオについて考察する。
我々はNeuroFluidという2段階の異なるネットワークを提案する。
初期形状、粘度、密度が異なる流体の基礎物理学を合理的に推定することが示されている。
論文 参考訳(メタデータ) (2022-03-03T15:13:29Z) - Learning 3D Granular Flow Simulations [6.308272531414633]
離散要素法LIGGGHTSにより生成された複雑な3次元粒状流シミュレーションプロセスの正確なモデリングに向けたグラフニューラルネットワークアプローチを提案する。
本稿では,3次元物体,境界条件,粒子-粒子,粒子-境界相互作用を扱うグラフニューラルネットワークの実装方法について論じる。
論文 参考訳(メタデータ) (2021-05-04T17:27:59Z) - When is Particle Filtering Efficient for Planning in Partially Observed
Linear Dynamical Systems? [60.703816720093016]
本稿では, 逐次計画における粒子フィルタリングの効率性について検討する。
我々は、粒子フィルタリングに基づくポリシーの長期報酬が正確な推測に基づいてそれに近いように、必要な粒子の数に縛り付けることができる。
このテクニックは、他のシーケンシャルな意思決定問題に有効であると考えています。
論文 参考訳(メタデータ) (2020-06-10T17:43:43Z) - Visual Grounding of Learned Physical Models [66.04898704928517]
人間は、物体の物理的特性を直感的に認識し、複雑な相互作用に従事している場合でも、その動きを予測する。
我々は、物理を同時に推論し、視覚と力学の先行に基づく将来の予測を行うニューラルモデルを提案する。
実験により、我々のモデルはいくつかの観測範囲内で物理的特性を推測できることが示され、モデルが目に見えないシナリオに迅速に適応し、将来正確な予測を行うことができる。
論文 参考訳(メタデータ) (2020-04-28T17:06:38Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
本稿では,機械学習のフレームワークとモデルの実装について紹介する。
グラフネットワーク・ベース・シミュレータ(GNS)と呼ばれる我々のフレームワークは、グラフ内のノードとして表現された粒子で物理系の状態を表現し、学習されたメッセージパスによって動的を計算します。
我々のモデルは,訓練中に数千の粒子による1段階の予測から,異なる初期条件,数千の時間ステップ,少なくとも1桁以上の粒子をテスト時に一般化できることを示す。
論文 参考訳(メタデータ) (2020-02-21T16:44:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。