Quantum theory of feedback cooling of an anelastic macro-mechanical
oscillator
- URL: http://arxiv.org/abs/2111.02412v1
- Date: Wed, 3 Nov 2021 18:00:00 GMT
- Title: Quantum theory of feedback cooling of an anelastic macro-mechanical
oscillator
- Authors: Kentaro Komori, Dominika \v{D}urov\v{c}\'ikov\'a, Vivishek Sudhir
- Abstract summary: We show how to harness ponderomotively generated quantum correlations to realize efficient cooling to the motional ground state.
This will pave the way for experiments that call for milligram-scale mechanical oscillators prepared in pure motional states.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conventional techniques for laser cooling, by coherent scattering off of
internal states or through an optical cavity mode, have so far proved
inefficient on mechanical oscillators heavier than a few nanograms. That is
because larger oscillators vibrate at frequencies much too small compared to
the scattering rates achievable by their coupling to auxiliary modes.
Decoherence mechanisms typically observed in heavy low frequency elastically
suspended oscillators also differ markedly from what is assumed in conventional
treatments of laser cooling. We show that for a low-frequency anelastic
oscillator forming the mechanically compliant end-mirror of a cavity, detuned
optical readout, together with measurement-based feedback to stiffen and dampen
it, can harness ponderomotively generated quantum correlations, to realize
efficient cooling to the motional ground state. This will pave the way for
experiments that call for milligram-scale mechanical oscillators prepared in
pure motional states, for example, for tests of gravity's effect on massive
quantum systems.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Motional sideband asymmetry of a solid-state mechanical resonator at room temperature [0.0]
We sideband-cool a membrane-in-the-middle system close to the quantum ground state from room temperature.
We observe motional sideband asymmetry in a dual-homodyne measurement.
arXiv Detail & Related papers (2024-08-12T21:23:38Z) - Optomechanical cooling with simultaneous intracavity and extracavity
squeezed light [0.0]
We propose a novel and experimentally feasible approach to achieve high-efficiency ground-state cooling of a mechanical oscillator in an optomechanical system.
The quantum interference effect generated by intracavity squeezing and extracavity squeezing can completely suppress the non-resonant Stokes heating process.
Compared with other traditional optomechanical cooling schemes, the single-photon cooling rate in this joint-squeezing scheme can be tremendously enlarged by nearly three orders of magnitude.
arXiv Detail & Related papers (2024-03-02T11:15:00Z) - In-situ-tunable spin-spin interactions in a Penning trap with in-bore
optomechanics [41.94295877935867]
We present an optomechanical system for in-situ tuning of the coherent spin-motion and spin-spin interaction strength.
We characterize the system using measurements of the induced mean-field spin precession.
These experiments show approximately a $times2$ variation in the ratio of the coherent to incoherent interaction strength.
arXiv Detail & Related papers (2024-01-31T11:00:39Z) - Dissipative Optomechanics in High-Frequency Nanomechanical Resonators [0.0]
We show the first dissipative optomechanical system operating in the sideband-resolved regime, where the mechanical frequency is larger than the optical linewidth.
Our figures represent a two-order-of-magnitude leap in the mechanical frequency and a tenfold increase in the dissipative optomechanical coupling rate compared to previous works.
arXiv Detail & Related papers (2022-12-30T03:16:31Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Oscillator laser model [77.34726150561087]
Diffusion coefficients, consistent with the model and necessary for solving quantum nonlinear laser equations analytically, are found.
Collective Rabi splitting peaks are predicted in the intensity fluctuation spectra of the superradiant lasers.
arXiv Detail & Related papers (2022-06-11T07:38:31Z) - Controlling mode orientations and frequencies in levitated cavity
optomechanics [0.0]
coherent-scattering (CS) set-up allows quantum ground state cooling of a levitated nanoparticles.
We demonstrate experimentally that it is possible to strongly cavity cool and control the em unperturbed modes.
Findings have implications for directional force sensing using CS set-ups.
arXiv Detail & Related papers (2022-04-20T17:07:31Z) - Localized vibrational modes in waveguide quantum optomechanics with
spontaneously broken PT symmetry [117.44028458220427]
We study theoretically two vibrating quantum emitters trapped near a one-dimensional waveguide and interacting with propagating photons.
In the regime of strong optomechanical interaction the light-induced coupling of emitter vibrations can lead to formation of spatially localized vibration modes, exhibiting parity-time symmetry breaking.
arXiv Detail & Related papers (2021-06-29T12:45:44Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Quantum motion of a squeezed mechanical oscillator attained via a
optomechanical experiment [0.0]
We experimentally investigate a mechanical squeezed state realized in a parametrically-modulated membrane resonator embedded in an optical cavity.
We provide a theoretical framework for quantitatively interpreting the observations and present an extended comparison with the experiment.
A notable result is that the spectral shape of each motional sideband provides a clear signature of a quantum mechanical squeezed state without the necessity of absolute calibrations.
arXiv Detail & Related papers (2020-06-25T20:34:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.