Controlling mode orientations and frequencies in levitated cavity
optomechanics
- URL: http://arxiv.org/abs/2204.09625v3
- Date: Thu, 2 Jun 2022 12:04:00 GMT
- Title: Controlling mode orientations and frequencies in levitated cavity
optomechanics
- Authors: A. Pontin, H. Fu, J.H. Iacoponi, P.F. Barker and T.S. Monteiro
- Abstract summary: coherent-scattering (CS) set-up allows quantum ground state cooling of a levitated nanoparticles.
We demonstrate experimentally that it is possible to strongly cavity cool and control the em unperturbed modes.
Findings have implications for directional force sensing using CS set-ups.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cavity optomechanics offers quantum cooling, quantum control and measurement
of small mechanical oscillators. However the optical backactions that underpin
quantum control can significantly disturb the oscillator modes: mechanical
frequencies are shifted by the optical spring effect and light-matter
hybridisation in strong coupling regimes; mechanical modes hybridise with each
other via the cavity mode. This is even more pertinent in the field of
levitated optomechanics, where optical trapping fully determines the mechanical
modes and their frequencies. Here, using the coherent-scattering (CS) set-up
that allowed quantum ground state cooling of a levitated nanoparticle, we show
that -- when trapping away from a node of the cavity standing wave -- the CS
field opposes optical spring shifts and mechanical mode hybridisation. At an
optimal cancellation point, independent of most experimental parameters, we
demonstrate experimentally that it is possible to strongly cavity cool and
control the {\em unperturbed} modes. Suppression of the cavity-induced mode
hybridisation in the $x-y$ plane is quantified by measuring the
$S_{xy}(\omega)$ correlation spectra which are seen to always be
anti-correlated except at the cancellation point where they become
uncorrelated. The findings have implications for directional force sensing
using CS set-ups.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Strong coupling at room temperature with a centimeter-scale quartz crystal [0.0]
We report an optomechanical system with independent control over pumping power and frequency detuning to achieve and characterize the strong-coupling regime of a bulk acoustic-wave resonator.
Our results provide valuable insights into the performances of room-temperature macroscopic mechanical systems and their applications in hybrid quantum devices.
arXiv Detail & Related papers (2024-05-28T12:15:05Z) - Squeezing for Broadband Multidimensional Variational Measurement [55.2480439325792]
We show that optical losses inside cavity restrict back action exclusion due to loss noise.
We analyze how two-photon (nondegenerate) and conventional (degenerate) squeezing improve sensitivity with account optical losses.
arXiv Detail & Related papers (2023-10-06T18:41:29Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Enhanced weak force sensing through atom-based coherent noise
cancellation in a hybrid cavity optomechanical system [0.0]
We investigate weak force-sensing based on coherent quantum noise cancellation in a nonlinear hybrid optomechanical system.
The optomechanical cavity contains a moveable mechanical mirror, a fixed semitransparent mirror, an ensemble of ultracold atoms, and an optical parametric amplifier.
arXiv Detail & Related papers (2022-01-26T08:26:12Z) - Quantum theory of feedback cooling of an anelastic macro-mechanical
oscillator [0.0]
We show how to harness ponderomotively generated quantum correlations to realize efficient cooling to the motional ground state.
This will pave the way for experiments that call for milligram-scale mechanical oscillators prepared in pure motional states.
arXiv Detail & Related papers (2021-11-03T18:00:00Z) - Optomechanical strong coupling between a single cavity photon and a
single atom [0.0]
Single atoms coupled to a cavity offer unique opportunities as quantum optomechanical devices because of their small mass and strong interaction with light.
We propose an alternative route in such systems, which relies on the coupling of atomic motion to the much narrower cavity-dressed atomic resonance frequency.
We analyze the prominent observable features of this optomechanical strong coupling, which include a per-photon motional heating that is significantly larger than the single-photon recoil energy.
arXiv Detail & Related papers (2021-08-07T21:32:17Z) - Strong Coupling Optomechanics Mediated by a Qubit in the Dispersive
Regime [0.0]
dispersive, radiation-pressure interaction between the mechanical and the electromagnetic modes is typically very weak.
We show that if the interaction is mediated by a Josephson circuit, one can have an effective dynamic corresponding to a huge enhancement of the single-photon optomechanical coupling.
arXiv Detail & Related papers (2021-07-29T20:24:20Z) - Localized vibrational modes in waveguide quantum optomechanics with
spontaneously broken PT symmetry [117.44028458220427]
We study theoretically two vibrating quantum emitters trapped near a one-dimensional waveguide and interacting with propagating photons.
In the regime of strong optomechanical interaction the light-induced coupling of emitter vibrations can lead to formation of spatially localized vibration modes, exhibiting parity-time symmetry breaking.
arXiv Detail & Related papers (2021-06-29T12:45:44Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.