論文の概要: Perturb-and-max-product: Sampling and learning in discrete energy-based
models
- arxiv url: http://arxiv.org/abs/2111.02458v1
- Date: Wed, 3 Nov 2021 18:23:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-05 12:37:39.189268
- Title: Perturb-and-max-product: Sampling and learning in discrete energy-based
models
- Title(参考訳): 摂動と最大積:離散エネルギーモデルにおけるサンプリングと学習
- Authors: Miguel Lazaro-Gredilla, Antoine Dedieu, Dileep George
- Abstract要約: 我々は、離散エネルギーモデルでサンプリングと学習を行うための並列かつスケーラブルなメカニズムであるパーターブ・アンド・マックス・プロダクツ(PMP)を提案する。
a)Isingモデルの場合、PMPはGibsやGibs-with-Gradientsよりも桁違いに高速で、類似またはより良い品質のサンプルを学習・生成でき、(b)PMPはRBMから学習・サンプリングすることができ、(c)GibsとGWGが混在しない大きな絡み合ったグラフィカルモデルでPMPが成功することを示す。
- 参考スコア(独自算出の注目度): 3.056751497358646
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Perturb-and-MAP offers an elegant approach to approximately sample from a
energy-based model (EBM) by computing the maximum-a-posteriori (MAP)
configuration of a perturbed version of the model. Sampling in turn enables
learning. However, this line of research has been hindered by the general
intractability of the MAP computation. Very few works venture outside tractable
models, and when they do, they use linear programming approaches, which as we
will show, have several limitations. In this work we present
perturb-and-max-product (PMP), a parallel and scalable mechanism for sampling
and learning in discrete EBMs. Models can be arbitrary as long as they are
built using tractable factors. We show that (a) for Ising models, PMP is orders
of magnitude faster than Gibbs and Gibbs-with-Gradients (GWG) at learning and
generating samples of similar or better quality; (b) PMP is able to learn and
sample from RBMs; (c) in a large, entangled graphical model in which Gibbs and
GWG fail to mix, PMP succeeds.
- Abstract(参考訳): Perturb-and-MAPは、摂動バージョンのMAP構成を計算し、エネルギーベースモデル(EBM)からおよそサンプルを抽出するエレガントなアプローチを提供する。
サンプリングは学習を可能にする。
しかし、この研究はMAP計算の一般的な難易度によって妨げられている。
トラクタブルなモデル外で動作する作業はほとんどなく、それらが実行された場合、線形プログラミングアプローチを使用します。
本稿では,個別のebmにおけるサンプリングと学習のための並列かつスケーラブルなメカニズムであるperturb-and-max-product (pmp)を提案する。
モデルは、抽出可能な要素を使って構築される限り任意のものとなる。
私たちはそれを示します
(a) iting モデルの場合、pmp は、gibbs や gibbs-with-gradients (gwg) を学習し、類似又は良好な品質のサンプルを生成する場合において、桁違いに速い。
b)PMPは、RBMから学習し、サンプリングすることができる。
(c) GibbsとGWGが混在しない大きな絡み合ったグラフィカルモデルでは、PMPは成功する。
関連論文リスト
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
本稿では,スコアマッチングを組み合わせた勾配向上アルゴリズムとして,SSM(Supervised Score-based Model)を提案する。
推測時間と予測精度のバランスをとるため,SSMの学習とサンプリングに関する理論的解析を行った。
我々のモデルは、精度と推測時間の両方で既存のモデルより優れています。
論文 参考訳(メタデータ) (2024-11-02T07:06:53Z) - On the Sample Complexity of Quantum Boltzmann Machine Learning [0.0]
モデルと目標との期待値の差からQBM学習の運用的定義を与える。
解は、少なくとも複数のギブス状態を用いて勾配降下で得られることを証明した。
特に,平均場,ガウスフェルミオン,幾何学的局所ハミルトニアンに基づく事前学習戦略を提案する。
論文 参考訳(メタデータ) (2023-06-26T18:00:50Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
我々は,モンテカルロサンプリングと反復線形解法を組み合わせた確率的アンローリングを導入し,行列逆転を回避した。
理論的解析により,解法の繰り返しによる解法の解法と逆転が最大値推定の勾配推定を高速化することを示した。
シミュレーションおよび実データ実験において、確率的アンロールは、モデル性能の損失を最小限に抑えながら、勾配EMよりも桁違いに高速な潜在ガウスモデルを学習することを示した。
論文 参考訳(メタデータ) (2023-06-05T21:08:34Z) - Approximate Gibbs Sampler for Efficient Inference of Hierarchical Bayesian Models for Grouped Count Data [0.0]
本研究は、推定精度を維持しつつ、HBPRMを効率的に学習するための近似ギブスサンプリング器(AGS)を開発した。
実データと合成データを用いた数値実験により,AGSの優れた性能を示した。
論文 参考訳(メタデータ) (2022-11-28T21:00:55Z) - PAC Reinforcement Learning for Predictive State Representations [60.00237613646686]
部分的に観察可能な力学系におけるオンライン強化学習(RL)について検討する。
我々は、他のよく知られたモデルをキャプチャする表現モデルである予測状態表現(PSR)モデルに焦点を当てる。
我々は,サンプル複雑性のスケーリングにおいて,ほぼ最適なポリシを学習可能な,PSRのための新しいモデルベースアルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-07-12T17:57:17Z) - Particle Dynamics for Learning EBMs [83.59335980576637]
エネルギーベースモデリングは教師なし学習への有望なアプローチであり、単一のモデルから多くの下流アプリケーションを生み出す。
コントラスト的アプローチ(contrastive approach)"でエネルギーベースモデルを学習する際の主な困難は、各イテレーションで現在のエネルギー関数からサンプルを生成することである。
本稿では,これらのサンプルを取得し,現行モデルからの粗大なMCMCサンプリングを回避するための代替手法を提案する。
論文 参考訳(メタデータ) (2021-11-26T23:41:07Z) - Continual Learning with Fully Probabilistic Models [70.3497683558609]
機械学習の完全確率的(または生成的)モデルに基づく継続的学習のアプローチを提案する。
生成器と分類器の両方に対してガウス混合モデル(GMM)インスタンスを用いた擬似リハーサル手法を提案する。
我々は,GMRが,クラス増分学習問題に対して,非常に競合的な時間とメモリの複雑さで,最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2021-04-19T12:26:26Z) - Learning Energy-Based Model with Variational Auto-Encoder as Amortized
Sampler [35.80109055748496]
最大確率でエネルギーベースモデル(ebms)を訓練するにはマルコフ連鎖モンテカルロサンプリングが必要である。
我々は、エネルギー関数から派生したランゲビンダイナミクスのような有限ステップMCMCを初期化する変分オートエンコーダ(VAE)を学びます。
これらのアモールト化MCMCサンプルにより、ESMは「合成による分析」スキームに従って最大で訓練することができる。
我々はこの共同学習アルゴリズムを変分MCMC教育と呼び、VAEはEMMをデータ分布に向けて追従する。
論文 参考訳(メタデータ) (2020-12-29T20:46:40Z) - Tensor Networks for Probabilistic Sequence Modeling [7.846449972735859]
シーケンスデータの確率的モデリングには,一様行列積状態(u-MPS)モデルを用いる。
次に、訓練されたu-MPSに対して、様々な条件分布から効率的にサンプリングできる新しい生成アルゴリズムを提案する。
合成テキストデータと実テキストデータを用いたシーケンスモデリング実験は、U-MPSが様々なベースラインより優れていることを示す。
論文 参考訳(メタデータ) (2020-03-02T17:16:05Z) - Learning Gaussian Graphical Models via Multiplicative Weights [54.252053139374205]
乗算重み更新法に基づいて,Klivans と Meka のアルゴリズムを適用した。
アルゴリズムは、文献の他のものと質的に類似したサンプル複雑性境界を楽しみます。
ランタイムが低い$O(mp2)$で、$m$サンプルと$p$ノードの場合には、簡単にオンライン形式で実装できる。
論文 参考訳(メタデータ) (2020-02-20T10:50:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。