Differential Privacy Over Riemannian Manifolds
- URL: http://arxiv.org/abs/2111.02516v1
- Date: Wed, 3 Nov 2021 20:43:54 GMT
- Title: Differential Privacy Over Riemannian Manifolds
- Authors: Matthew Reimherr, Karthik Bharath, Carlos Soto
- Abstract summary: We present an extension of the Laplace or K-norm mechanism that utilizes intrinsic distances and volumes on the manifold.
We demonstrate that our mechanism is rate optimal and depends only on the dimension of the manifold, not on the dimension of any ambient space.
- Score: 9.453554184019108
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we consider the problem of releasing a differentially private
statistical summary that resides on a Riemannian manifold. We present an
extension of the Laplace or K-norm mechanism that utilizes intrinsic distances
and volumes on the manifold. We also consider in detail the specific case where
the summary is the Fr\'echet mean of data residing on a manifold. We
demonstrate that our mechanism is rate optimal and depends only on the
dimension of the manifold, not on the dimension of any ambient space, while
also showing how ignoring the manifold structure can decrease the utility of
the sanitized summary. We illustrate our framework in two examples of
particular interest in statistics: the space of symmetric positive definite
matrices, which is used for covariance matrices, and the sphere, which can be
used as a space for modeling discrete distributions.
Related papers
- Scaling Riemannian Diffusion Models [68.52820280448991]
We show that our method enables us to scale to high dimensional tasks on nontrivial manifold.
We model QCD densities on $SU(n)$ lattices and contrastively learned embeddings on high dimensional hyperspheres.
arXiv Detail & Related papers (2023-10-30T21:27:53Z) - A Geometric Insight into Equivariant Message Passing Neural Networks on
Riemannian Manifolds [1.0878040851638]
We argue that the metric attached to a coordinate-independent feature field should optimally preserve the principal bundle's original metric.
We obtain a message passing scheme on the manifold by discretizing the diffusion equation flow for a fixed time step.
The discretization of the higher-order diffusion process on a graph yields a new general class of equivariant GNN.
arXiv Detail & Related papers (2023-10-16T14:31:13Z) - Conformal inference for regression on Riemannian Manifolds [49.7719149179179]
We investigate prediction sets for regression scenarios when the response variable, denoted by $Y$, resides in a manifold, and the covariable, denoted by X, lies in Euclidean space.
We prove the almost sure convergence of the empirical version of these regions on the manifold to their population counterparts.
arXiv Detail & Related papers (2023-10-12T10:56:25Z) - Shape And Structure Preserving Differential Privacy [70.08490462870144]
We show how the gradient of the squared distance function offers better control over sensitivity than the Laplace mechanism.
We also show how using the gradient of the squared distance function offers better control over sensitivity than the Laplace mechanism.
arXiv Detail & Related papers (2022-09-21T18:14:38Z) - Differentially private Riemannian optimization [40.23168342389821]
We introduce a framework of differentially private.
Ritual risk problem where the.
parameter is constrained to a.
Rockefellerian manifold.
We show the efficacy of the proposed framework in several applications.
arXiv Detail & Related papers (2022-05-19T12:04:15Z) - Wrapped Distributions on homogeneous Riemannian manifolds [58.720142291102135]
Control over distributions' properties, such as parameters, symmetry and modality yield a family of flexible distributions.
We empirically validate our approach by utilizing our proposed distributions within a variational autoencoder and a latent space network model.
arXiv Detail & Related papers (2022-04-20T21:25:21Z) - Riemannian Gaussian distributions, random matrix ensembles and diffusion
kernels [0.0]
We show how to compute marginals of the probability density functions on a random matrix type of symmetric spaces.
We also show how the probability density functions are a particular case of diffusion kernels of the Karlin-McGregor type, describing non-intersecting processes in the Weyl chamber of Lie groups.
arXiv Detail & Related papers (2020-11-27T11:41:29Z) - On the minmax regret for statistical manifolds: the role of curvature [68.8204255655161]
Two-part codes and the minimum description length have been successful in delivering procedures to single out the best models.
We derive a sharper expression than the standard one given by the complexity, where the scalar curvature of the Fisher information metric plays a dominant role.
arXiv Detail & Related papers (2020-07-06T17:28:19Z) - Disentangling by Subspace Diffusion [72.1895236605335]
We show that fully unsupervised factorization of a data manifold is possible if the true metric of the manifold is known.
Our work reduces the question of whether unsupervised metric learning is possible, providing a unifying insight into the geometric nature of representation learning.
arXiv Detail & Related papers (2020-06-23T13:33:19Z) - Sample complexity and effective dimension for regression on manifolds [13.774258153124205]
We consider the theory of regression on a manifold using kernel reproducing Hilbert space methods.
We show that certain spaces of smooth functions on a manifold are effectively finite-dimensional, with a complexity that scales according to the manifold dimension.
arXiv Detail & Related papers (2020-06-13T14:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.