A Cyber Threat Intelligence Sharing Scheme based on Federated Learning
for Network Intrusion Detection
- URL: http://arxiv.org/abs/2111.02791v1
- Date: Thu, 4 Nov 2021 12:06:34 GMT
- Title: A Cyber Threat Intelligence Sharing Scheme based on Federated Learning
for Network Intrusion Detection
- Authors: Mohanad Sarhan, Siamak Layeghy, Nour Moustafa, Marius Portmann
- Abstract summary: We propose a collaborative federated learning scheme to address privacy concerns and the lack of a universal format of datasets.
The proposed framework allows multiple organisations to join forces in the design, training, and evaluation of a robust ML-based network intrusion detection system.
- Score: 3.5557219875516655
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The uses of Machine Learning (ML) in detection of network attacks have been
effective when designed and evaluated in a single organisation. However, it has
been very challenging to design an ML-based detection system by utilising
heterogeneous network data samples originating from several sources. This is
mainly due to privacy concerns and the lack of a universal format of datasets.
In this paper, we propose a collaborative federated learning scheme to address
these issues. The proposed framework allows multiple organisations to join
forces in the design, training, and evaluation of a robust ML-based network
intrusion detection system. The threat intelligence scheme utilises two
critical aspects for its application; the availability of network data traffic
in a common format to allow for the extraction of meaningful patterns across
data sources. Secondly, the adoption of a federated learning mechanism to avoid
the necessity of sharing sensitive users' information between organisations. As
a result, each organisation benefits from other organisations cyber threat
intelligence while maintaining the privacy of its data internally. The model is
trained locally and only the updated weights are shared with the remaining
participants in the federated averaging process. The framework has been
designed and evaluated in this paper by using two key datasets in a NetFlow
format known as NF-UNSW-NB15-v2 and NF-BoT-IoT-v2. Two other common scenarios
are considered in the evaluation process; a centralised training method where
the local data samples are shared with other organisations and a localised
training method where no threat intelligence is shared. The results demonstrate
the efficiency and effectiveness of the proposed framework by designing a
universal ML model effectively classifying benign and intrusive traffic
originating from multiple organisations without the need for local data
exchange.
Related papers
- Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Decentralized Online Federated G-Network Learning for Lightweight
Intrusion Detection [2.7225008315665424]
This paper proposes a novel Decentralized and Online Federated Learning Intrusion Detection architecture based on the G-Network model with collaborative learning.
The performance evaluation results using public Kitsune and Bot-IoT datasets show that DOF-ID significantly improves the intrusion detection performance in all of the collaborating components.
arXiv Detail & Related papers (2023-06-22T16:46:00Z) - Towards Cooperative Federated Learning over Heterogeneous Edge/Fog
Networks [49.19502459827366]
Federated learning (FL) has been promoted as a popular technique for training machine learning (ML) models over edge/fog networks.
Traditional implementations of FL have largely neglected the potential for inter-network cooperation.
We advocate for cooperative federated learning (CFL), a cooperative edge/fog ML paradigm built on device-to-device (D2D) and device-to-server (D2S) interactions.
arXiv Detail & Related papers (2023-03-15T04:41:36Z) - GowFed -- A novel Federated Network Intrusion Detection System [0.15469452301122172]
This work presents GowFed, a novel network threat detection system that combines the usage of Gower Dissimilarity matrices and Federated averaging.
Different approaches of GowFed have been developed based on state-of the-art knowledge: (1) a vanilla version; and (2) a version instrumented with an attention mechanism.
Overall, GowFed intends to be the first stepping stone towards the combined usage of Federated Learning and Gower Dissimilarity matrices to detect network threats in industrial-level networks.
arXiv Detail & Related papers (2022-10-28T23:53:37Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - An Interpretable Federated Learning-based Network Intrusion Detection
Framework [9.896258523574424]
FEDFOREST is a novel learning-based NIDS that combines interpretable Gradient Boosting Decision Tree (GBDT) and Federated Learning (FL) framework.
FEDFOREST is composed of multiple clients that extract local cyberattack data features for the server to train models and detect intrusions.
Experiments on 4 cyberattack datasets demonstrate that FEDFOREST is effective, efficient, interpretable, and extendable.
arXiv Detail & Related papers (2022-01-10T02:12:32Z) - Segmented Federated Learning for Adaptive Intrusion Detection System [0.6445605125467573]
Cyberattacks cause organizations great financial, and reputation harm.
Current network intrusion detection systems (NIDS) seem to be insufficent.
We propose a Segmented-Federated Learning (Segmented-FL) learning scheme for a more efficient NIDS.
arXiv Detail & Related papers (2021-07-02T07:47:05Z) - An Explainable Machine Learning-based Network Intrusion Detection System
for Enabling Generalisability in Securing IoT Networks [0.0]
Machine Learning (ML)-based network intrusion detection systems bring many benefits for enhancing the security posture of an organisation.
Many systems have been designed and developed in the research community, often achieving a perfect detection rate when evaluated using certain datasets.
This paper tightens the gap by evaluating the generalisability of a common feature set to different network environments and attack types.
arXiv Detail & Related papers (2021-04-15T00:44:45Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - PIN: A Novel Parallel Interactive Network for Spoken Language
Understanding [68.53121591998483]
In the existing RNN-based approaches, ID and SF tasks are often jointly modeled to utilize the correlation information between them.
The experiments on two benchmark datasets, i.e., SNIPS and ATIS, demonstrate the effectiveness of our approach.
More encouragingly, by using the feature embedding of the utterance generated by the pre-trained language model BERT, our method achieves the state-of-the-art among all comparison approaches.
arXiv Detail & Related papers (2020-09-28T15:59:31Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
In domains where data are sensitive or private, there is great value in methods that can learn in a distributed manner without the data ever leaving the local devices.
We propose Weight Anonymized Factorization for Federated Learning (WAFFLe), an approach that combines the Indian Buffet Process with a shared dictionary of weight factors for neural networks.
arXiv Detail & Related papers (2020-08-13T04:26:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.