GowFed -- A novel Federated Network Intrusion Detection System
- URL: http://arxiv.org/abs/2210.16441v1
- Date: Fri, 28 Oct 2022 23:53:37 GMT
- Title: GowFed -- A novel Federated Network Intrusion Detection System
- Authors: Aitor Belenguer, Jose A. Pascual, Javier Navaridas
- Abstract summary: This work presents GowFed, a novel network threat detection system that combines the usage of Gower Dissimilarity matrices and Federated averaging.
Different approaches of GowFed have been developed based on state-of the-art knowledge: (1) a vanilla version; and (2) a version instrumented with an attention mechanism.
Overall, GowFed intends to be the first stepping stone towards the combined usage of Federated Learning and Gower Dissimilarity matrices to detect network threats in industrial-level networks.
- Score: 0.15469452301122172
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Network intrusion detection systems are evolving into intelligent systems
that perform data analysis while searching for anomalies in their environment.
Indeed, the development of deep learning techniques paved the way to build more
complex and effective threat detection models. However, training those models
may be computationally infeasible in most Edge or IoT devices. Current
approaches rely on powerful centralized servers that receive data from all
their parties -- violating basic privacy constraints and substantially
affecting response times and operational costs due to the huge communication
overheads. To mitigate these issues, Federated Learning emerged as a promising
approach, where different agents collaboratively train a shared model, without
exposing training data to others or requiring a compute-intensive centralized
infrastructure. This work presents GowFed, a novel network threat detection
system that combines the usage of Gower Dissimilarity matrices and Federated
averaging. Different approaches of GowFed have been developed based on state-of
the-art knowledge: (1) a vanilla version; and (2) a version instrumented with
an attention mechanism. Furthermore, each variant has been tested using
simulation oriented tools provided by TensorFlow Federated framework. In the
same way, a centralized analogous development of the Federated systems is
carried out to explore their differences in terms of scalability and
performance -- across a set of designed experiments/scenarios. Overall, GowFed
intends to be the first stepping stone towards the combined usage of Federated
Learning and Gower Dissimilarity matrices to detect network threats in
industrial-level networks.
Related papers
- Enhanced Anomaly Detection in Industrial Control Systems aided by Machine Learning [2.2457306746668766]
This study investigates whether combining both network and process data can improve attack detection in ICSs environments.
Our findings suggest that integrating network traffic with operational process data can enhance detection capabilities.
Although the results are promising, they are preliminary and highlight the need for further studies.
arXiv Detail & Related papers (2024-10-25T17:41:33Z) - INTELLECT: Adapting Cyber Threat Detection to Heterogeneous Computing Environments [0.055923945039144884]
This paper introduces INTELLECT, a novel solution that integrates feature selection, model pruning, and fine-tuning techniques into a cohesive pipeline for the dynamic adaptation of pre-trained ML models and configurations for IDSs.
We demonstrate the advantages of incorporating knowledge distillation techniques while fine-tuning, enabling the ML model to consistently adapt to local network patterns while preserving historical knowledge.
arXiv Detail & Related papers (2024-07-17T22:34:29Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Network Anomaly Detection Using Federated Learning [0.483420384410068]
We introduce a robust and scalable framework that enables efficient network anomaly detection.
We leverage federated learning, in which multiple participants train a global model jointly.
The proposed method performs better than baseline machine learning techniques on the UNSW-NB15 data set.
arXiv Detail & Related papers (2023-03-13T20:16:30Z) - A review of Federated Learning in Intrusion Detection Systems for IoT [0.15469452301122172]
Intrusion detection systems are evolving into intelligent systems that perform data analysis searching for anomalies in their environment.
Deep learning technologies opened the door to build more complex and effective threat detection models.
Current approaches rely on powerful centralized servers that receive data from all their parties.
This paper focuses on the application of Federated Learning approaches in the field of Intrusion Detection.
arXiv Detail & Related papers (2022-04-26T17:00:07Z) - Rethinking Architecture Design for Tackling Data Heterogeneity in
Federated Learning [53.73083199055093]
We show that attention-based architectures (e.g., Transformers) are fairly robust to distribution shifts.
Our experiments show that replacing convolutional networks with Transformers can greatly reduce catastrophic forgetting of previous devices.
arXiv Detail & Related papers (2021-06-10T21:04:18Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - From Federated to Fog Learning: Distributed Machine Learning over
Heterogeneous Wireless Networks [71.23327876898816]
Federated learning has emerged as a technique for training ML models at the network edge by leveraging processing capabilities across the nodes that collect the data.
We advocate a new learning paradigm called fog learning which will intelligently distribute ML model training across the continuum of nodes from edge devices to cloud servers.
arXiv Detail & Related papers (2020-06-07T05:11:18Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
Federated learning is a privacy-preserving approach to train a global model at a central server by collaborating with wireless devices.
We present a compressive sensing approach for federated learning over massive multiple-input multiple-output communication systems.
arXiv Detail & Related papers (2020-03-18T05:56:27Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.