Low-rank quantum state preparation
- URL: http://arxiv.org/abs/2111.03132v3
- Date: Thu, 27 Jul 2023 15:36:32 GMT
- Title: Low-rank quantum state preparation
- Authors: Israel F. Araujo, Carsten Blank, Ismael C. S. Ara\'ujo, Adenilton J.
da Silva
- Abstract summary: We propose an algorithm to reduce state preparation circuit depth by offloading computational complexity to a classical computer.
We show that the approximation is better on today's quantum processors.
- Score: 1.5427245397603195
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ubiquitous in quantum computing is the step to encode data into a quantum
state. This process is called quantum state preparation, and its complexity for
non-structured data is exponential on the number of qubits. Several works
address this problem, for instance, by using variational methods that train a
fixed depth circuit with manageable complexity. These methods have their
limitations, as the lack of a back-propagation technique and barren plateaus.
This work proposes an algorithm to reduce state preparation circuit depth by
offloading computational complexity to a classical computer. The initialized
quantum state can be exact or an approximation, and we show that the
approximation is better on today's quantum processors than the initialization
of the original state. Experimental evaluation demonstrates that the proposed
method enables more efficient initialization of probability distributions in a
quantum state.
Related papers
- Evaluation of phase shifts for non-relativistic elastic scattering using quantum computers [39.58317527488534]
This work reports the development of an algorithm that makes it possible to obtain phase shifts for generic non-relativistic elastic scattering processes on a quantum computer.
arXiv Detail & Related papers (2024-07-04T21:11:05Z) - Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
We propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers.
Our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28% and 57% on average.
arXiv Detail & Related papers (2024-06-17T14:10:10Z) - A quantum implementation of high-order power method for estimating geometric entanglement of pure states [39.58317527488534]
This work presents a quantum adaptation of the iterative higher-order power method for estimating the geometric measure of entanglement of multi-qubit pure states.
It is executable on current (hybrid) quantum hardware and does not depend on quantum memory.
We study the effect of noise on the algorithm using a simple theoretical model based on the standard depolarising channel.
arXiv Detail & Related papers (2024-05-29T14:40:24Z) - Streaming quantum state purification [4.189670490218164]
Quantum state purification is the task of recovering a nearly pure copy of an unknown pure quantum state.
This basic task has applications to quantum communication over noisy channels and quantum computation with imperfect devices.
We derive an efficient purification procedure based on the swap test for qudits of any dimension.
arXiv Detail & Related papers (2023-09-28T12:33:09Z) - GASP -- A Genetic Algorithm for State Preparation [0.0]
We present a genetic algorithm for state preparation (GASP) which generates relatively low-depth quantum circuits for initialising a quantum computer in a specified quantum state.
GASP can produce more efficient circuits of a given accuracy with lower depth and gate counts than other methods.
arXiv Detail & Related papers (2023-02-22T04:41:01Z) - Sample-size-reduction of quantum states for the noisy linear problem [0.0]
We show that it is possible to reduce a quantum sample size in a quantum random access memory (QRAM) to the linearithmic order.
We achieve a shorter run-time for the noisy linear problem.
arXiv Detail & Related papers (2023-01-08T05:53:17Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Efficient realization of quantum algorithms with qudits [0.70224924046445]
We propose a technique for an efficient implementation of quantum algorithms with multilevel quantum systems (qudits)
Our method uses a transpilation of a circuit in the standard qubit form, which depends on the parameters of a qudit-based processor.
We provide an explicit scheme of transpiling qubit circuits into sequences of single-qudit and two-qudit gates taken from a particular universal set.
arXiv Detail & Related papers (2021-11-08T11:09:37Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Efficient Algorithms for Causal Order Discovery in Quantum Networks [44.356294905844834]
Given black-box access to the input and output systems, we develop the first efficient quantum causal order discovery algorithm.
We model the causal order with quantum combs, and our algorithms output the order of inputs and outputs that the given process is compatible with.
Our algorithms will provide efficient ways to detect and optimize available transmission paths in quantum communication networks.
arXiv Detail & Related papers (2020-12-03T07:12:08Z) - Efficient State Preparation for Quantum Amplitude Estimation [0.951828574518325]
Quantum Amplitude Estimation can achieve a quadratic speed-up for applications classically solved by Monte Carlo simulation.
Currently known efficient techniques require problems based on log-concave probability distributions, involve learning an unknown distribution from empirical data, or fully rely on quantum arithmetic.
We introduce an approach to simplify state preparation, together with a circuit optimization technique, both of which can help reduce the circuit complexity for QAE state preparation significantly.
arXiv Detail & Related papers (2020-05-15T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.