Minimizing entanglement entropy for enhanced quantum state preparation
- URL: http://arxiv.org/abs/2507.22562v1
- Date: Wed, 30 Jul 2025 10:37:07 GMT
- Title: Minimizing entanglement entropy for enhanced quantum state preparation
- Authors: Oskari Kerppo, William Steadman, Ossi Niemimäki, Valtteri Lahtinen,
- Abstract summary: We present and analyze a novel two-step state preparation method.<n>The state with reduced entanglement entropy is then represented as a matrix product state.<n>Our method is suitable for NISQ devices and we give rigorous lower bounds on the accuracy of the prepared state.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum state preparation is an important subroutine in many quantum algorithms. The goal is to encode classical information directly to the quantum state so that it is possible to leverage quantum algorithms for data processing. However, quantum state preparation of arbitrary states scales exponentially in the number of two-qubit gates, and this makes quantum state preparation a very difficult task on quantum computers, especially on near-term noisy devices. This represents a major challenge in achieving quantum advantage. We present and analyze a novel two-step state preparation method where we first minimize the entanglement entropy of the target quantum state, thus transforming the state to one that is easier to prepare. The state with reduced entanglement entropy is then represented as a matrix product state, resulting in a high accuracy preparation of the target state. Our method is suitable for NISQ devices and we give rigorous lower bounds on the accuracy of the prepared state in terms of the entanglement entropy and demonstrate cutting-edge performance across a collection of benchmark states.
Related papers
- Quantum State Preparation Based on LimTDD [5.328178128965817]
This paper proposes a novel approach for quantum state preparation based on the Local Invertible Map Diagram (LimTDD)<n>LimTDD combines the advantages of tensor networks and decision diagrams, enabling efficient representation of quantum states.
arXiv Detail & Related papers (2025-07-19T06:00:27Z) - Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
We propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers.
Our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28% and 57% on average.
arXiv Detail & Related papers (2024-06-17T14:10:10Z) - Mixed-Dimensional Qudit State Preparation Using Edge-Weighted Decision Diagrams [3.393749500700096]
Quantum computers have the potential to solve intractable problems.
One key element to exploiting this potential is the capability to efficiently prepare quantum states for multi-valued, or qudit, systems.
In this paper, we investigate quantum state preparation with a focus on mixed-dimensional systems.
arXiv Detail & Related papers (2024-06-05T18:00:01Z) - Mitigating Errors on Superconducting Quantum Processors through Fuzzy
Clustering [38.02852247910155]
A new Quantum Error Mitigation (QEM) technique uses Fuzzy C-Means clustering to specifically identify measurement error patterns.
We report a proof-of-principle validation of the technique on a 2-qubit register, obtained as a subset of a real NISQ 5-qubit superconducting quantum processor.
We demonstrate that the FCM-based QEM technique allows for reasonable improvement of the expectation values of single- and two-qubit gates based quantum circuits.
arXiv Detail & Related papers (2024-02-02T14:02:45Z) - Enhanced quantum state transfer: Circumventing quantum chaotic behavior [35.74056021340496]
We show how to transfer few-particle quantum states in a two-dimensional quantum network.
Our approach paves the way to short-distance quantum communication for connecting distributed quantum processors or registers.
arXiv Detail & Related papers (2024-02-01T19:00:03Z) - Preparation of Entangled Many-Body States with Machine Learning [0.06768558752130309]
Preparation of a target quantum many-body state on quantum simulators is one of the significant steps in quantum science and technology.
With a small number of qubits, a few quantum states, such as the Greenberger-Horne-Zeilinger state, have been prepared, but fundamental difficulties in systems with many qubits remain.
Here, we provide one algorithm with an implementation of a deep learning process and achieve to prepare the target ground states with many qubits.
arXiv Detail & Related papers (2023-07-27T05:03:57Z) - Quantum Thermal State Preparation [39.91303506884272]
We introduce simple continuous-time quantum Gibbs samplers for simulating quantum master equations.
We construct the first provably accurate and efficient algorithm for preparing certain purified Gibbs states.
Our algorithms' costs have a provable dependence on temperature, accuracy, and the mixing time.
arXiv Detail & Related papers (2023-03-31T17:29:56Z) - GASP -- A Genetic Algorithm for State Preparation [0.0]
We present a genetic algorithm for state preparation (GASP) which generates relatively low-depth quantum circuits for initialising a quantum computer in a specified quantum state.
GASP can produce more efficient circuits of a given accuracy with lower depth and gate counts than other methods.
arXiv Detail & Related papers (2023-02-22T04:41:01Z) - Low-rank quantum state preparation [1.5427245397603195]
We propose an algorithm to reduce state preparation circuit depth by offloading computational complexity to a classical computer.
We show that the approximation is better on today's quantum processors.
arXiv Detail & Related papers (2021-11-04T19:56:21Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.