On the Complexity of Dynamic Submodular Maximization
- URL: http://arxiv.org/abs/2111.03198v1
- Date: Fri, 5 Nov 2021 00:04:29 GMT
- Title: On the Complexity of Dynamic Submodular Maximization
- Authors: Xi Chen, Binghui Peng
- Abstract summary: We show that any algorithm that maintains a $(0.5+epsilon)$-approximate solution under a cardinality constraint, for any constant $epsilon>0$, must have an amortized query complexity that is $mathitpolynomial$ in $n$.
This is in sharp contrast with recent dynamic algorithms of [LMNF+20, Mon20] that achieve $(0.5-epsilon)$-approximation with a $mathsfpolylog(n)$ amortized query complexity.
- Score: 15.406670088500087
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study dynamic algorithms for the problem of maximizing a monotone
submodular function over a stream of $n$ insertions and deletions. We show that
any algorithm that maintains a $(0.5+\epsilon)$-approximate solution under a
cardinality constraint, for any constant $\epsilon>0$, must have an amortized
query complexity that is $\mathit{polynomial}$ in $n$. Moreover, a linear
amortized query complexity is needed in order to maintain a $0.584$-approximate
solution. This is in sharp contrast with recent dynamic algorithms of [LMNF+20,
Mon20] that achieve $(0.5-\epsilon)$-approximation with a
$\mathsf{poly}\log(n)$ amortized query complexity.
On the positive side, when the stream is insertion-only, we present efficient
algorithms for the problem under a cardinality constraint and under a matroid
constraint with approximation guarantee $1-1/e-\epsilon$ and amortized query
complexities $\smash{O(\log (k/\epsilon)/\epsilon^2)}$ and
$\smash{k^{\tilde{O}(1/\epsilon^2)}\log n}$, respectively, where $k$ denotes
the cardinality parameter or the rank of the matroid.
Related papers
- Robust Approximation Algorithms for Non-monotone $k$-Submodular
Maximization under a Knapsack Constraint [0.0]
Two deterministic approximation algorithms are presented for the problem of non-monotone $k$-submodular complexity under a knapsack constraint.
Our algorithms provide constant approximation ratios within only $O(nk)$ query complexity for the non-monotone objective.
arXiv Detail & Related papers (2023-09-21T12:42:52Z) - Fast algorithms for k-submodular maximization subject to a matroid
constraint [10.270420338235237]
We apply a Threshold-Decreasing Algorithm to maximize $k$-submodular functions under a matroid constraint.
We give a $(frac12 - epsilon)$-approximation algorithm for $k$-submodular function.
arXiv Detail & Related papers (2023-07-26T07:08:03Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
We introduce efficient $(1+varepsilon)$-approximation algorithms for the binary matrix factorization (BMF) problem.
The goal is to approximate $mathbfA$ as a product of low-rank factors.
Our techniques generalize to other common variants of the BMF problem.
arXiv Detail & Related papers (2023-06-02T18:55:27Z) - Dynamic Algorithms for Matroid Submodular Maximization [11.354502646593607]
Submodular complexity under matroid and cardinality constraints are problems with a wide range of applications in machine learning, auction theory, and optimization.
In this paper, we consider these problems in the dynamic setting, where we have access to a monotone submodular function $f: 2V rightarrow mathbbR+$ and we are given a sequence $calmathS$ of insertions and deletions of elements of an underlying ground set $V$.
We develop the first fully dynamic algorithm for the submodular problem under the matroid constraint
arXiv Detail & Related papers (2023-06-01T17:54:15Z) - Optimal Query Complexities for Dynamic Trace Estimation [59.032228008383484]
We consider the problem of minimizing the number of matrix-vector queries needed for accurate trace estimation in the dynamic setting where our underlying matrix is changing slowly.
We provide a novel binary tree summation procedure that simultaneously estimates all $m$ traces up to $epsilon$ error with $delta$ failure probability.
Our lower bounds (1) give the first tight bounds for Hutchinson's estimator in the matrix-vector product model with Frobenius norm error even in the static setting, and (2) are the first unconditional lower bounds for dynamic trace estimation.
arXiv Detail & Related papers (2022-09-30T04:15:44Z) - Practical and Parallelizable Algorithms for Non-Monotone Submodular
Maximization with Size Constraint [20.104148319012854]
We present and parallelizable for a submodular function, not necessarily a monotone, with respect to a size constraint.
We improve the best approximation factor achieved by an algorithm that has optimal adaptivity and nearly optimal complexity query to $0.193 - varepsilon$.
arXiv Detail & Related papers (2020-09-03T22:43:55Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z) - Continuous Submodular Maximization: Beyond DR-Submodularity [48.04323002262095]
We first prove a simple variant of the vanilla coordinate ascent, called Coordinate-Ascent+.
We then propose Coordinate-Ascent++, that achieves tight $(1-1/e-varepsilon)$-approximation guarantee while performing the same number of iterations.
The computation of each round of Coordinate-Ascent++ can be easily parallelized so that the computational cost per machine scales as $O(n/sqrtvarepsilon+nlog n)$.
arXiv Detail & Related papers (2020-06-21T06:57:59Z) - Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample
Complexity [59.34067736545355]
Given an MDP with $S$ states, $A$ actions, the discount factor $gamma in (0,1)$, and an approximation threshold $epsilon > 0$, we provide a model-free algorithm to learn an $epsilon$-optimal policy.
For small enough $epsilon$, we show an improved algorithm with sample complexity.
arXiv Detail & Related papers (2020-06-06T13:34:41Z) - On the Complexity of Minimizing Convex Finite Sums Without Using the
Indices of the Individual Functions [62.01594253618911]
We exploit the finite noise structure of finite sums to derive a matching $O(n2)$-upper bound under the global oracle model.
Following a similar approach, we propose a novel adaptation of SVRG which is both emphcompatible with oracles, and achieves complexity bounds of $tildeO(n2+nsqrtL/mu)log (1/epsilon)$ and $O(nsqrtL/epsilon)$, for $mu>0$ and $mu=0$
arXiv Detail & Related papers (2020-02-09T03:39:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.