Robust Approximation Algorithms for Non-monotone $k$-Submodular
Maximization under a Knapsack Constraint
- URL: http://arxiv.org/abs/2309.12025v1
- Date: Thu, 21 Sep 2023 12:42:52 GMT
- Title: Robust Approximation Algorithms for Non-monotone $k$-Submodular
Maximization under a Knapsack Constraint
- Authors: Dung T.K. Ha, Canh V. Pham, Tan D. Tran, and Huan X. Hoang
- Abstract summary: Two deterministic approximation algorithms are presented for the problem of non-monotone $k$-submodular complexity under a knapsack constraint.
Our algorithms provide constant approximation ratios within only $O(nk)$ query complexity for the non-monotone objective.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The problem of non-monotone $k$-submodular maximization under a knapsack
constraint ($\kSMK$) over the ground set size $n$ has been raised in many
applications in machine learning, such as data summarization, information
propagation, etc. However, existing algorithms for the problem are facing
questioning of how to overcome the non-monotone case and how to fast return a
good solution in case of the big size of data. This paper introduces two
deterministic approximation algorithms for the problem that competitively
improve the query complexity of existing algorithms.
Our first algorithm, $\LAA$, returns an approximation ratio of $1/19$ within
$O(nk)$ query complexity. The second one, $\RLA$, improves the approximation
ratio to $1/5-\epsilon$ in $O(nk)$ queries, where $\epsilon$ is an input
parameter.
Our algorithms are the first ones that provide constant approximation ratios
within only $O(nk)$ query complexity for the non-monotone objective. They,
therefore, need fewer the number of queries than state-of-the-the-art ones by a
factor of $\Omega(\log n)$.
Besides the theoretical analysis, we have evaluated our proposed ones with
several experiments in some instances: Influence Maximization and Sensor
Placement for the problem. The results confirm that our algorithms ensure
theoretical quality as the cutting-edge techniques and significantly reduce the
number of queries.
Related papers
- Enhanced Deterministic Approximation Algorithm for Non-monotone Submodular Maximization under Knapsack Constraint with Linear Query Complexity [0.0]
We improve the approximation factor of the fastest deterministic algorithm from $6+epsilon$ to $5+epsilon$.
Our technique is based on optimizing the performance of two components: the threshold greedy subroutine and the building of two disjoint sets as candidate solutions.
arXiv Detail & Related papers (2024-05-20T02:24:58Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Near-Optimal Bounds for Learning Gaussian Halfspaces with Random
Classification Noise [50.64137465792738]
We show that any efficient SQ algorithm for the problem requires sample complexity at least $Omega(d1/2/(maxp, epsilon)2)$.
Our lower bound suggests that this quadratic dependence on $1/epsilon$ is inherent for efficient algorithms.
arXiv Detail & Related papers (2023-07-13T18:59:28Z) - Information-Computation Tradeoffs for Learning Margin Halfspaces with
Random Classification Noise [50.64137465792738]
We study the problem of PAC $gamma$-margin halfspaces with Random Classification Noise.
We establish an information-computation tradeoff suggesting an inherent gap between the sample complexity of the problem and the sample complexity of computationally efficient algorithms.
arXiv Detail & Related papers (2023-06-28T16:33:39Z) - Linear Query Approximation Algorithms for Non-monotone Submodular
Maximization under Knapsack Constraint [16.02833173359407]
This work introduces two constant factor approximation algorithms with linear query complexity for non-monotone submodular over a ground set of size $n$ subject to a knapsack constraint.
$mathsfDLA$ is a deterministic algorithm that provides an approximation factor of $6+epsilon$ while $mathsfRLA$ is a randomized algorithm with an approximation factor of $4+epsilon$.
arXiv Detail & Related papers (2023-05-17T15:27:33Z) - Submodular Maximization subject to a Knapsack Constraint: Combinatorial
Algorithms with Near-optimal Adaptive Complexity [13.416309759182635]
We obtain the first constant approximation for non-monotone submodular algorithms with near-optimal $O(log n)$ adaptive complexity.
Our algorithm asks $tildeO(n2)$ value queries, but can be modified to run with only $tildeO(n)$ instead.
This is also the first approach with sublinear adaptive complexity for the problem and yields comparable to the state-of-the-art even for special cases of cardinality constraints or monotone objectives.
arXiv Detail & Related papers (2021-02-16T18:15:51Z) - Quick Streaming Algorithms for Maximization of Monotone Submodular
Functions in Linear Time [16.346069386394703]
We consider the problem of monotone, submodular over a ground set of size $n$ subject to cardinality constraint $k$.
We introduce the first deterministic algorithms with linear time complexity; these algorithms are streaming algorithms.
Our single-pass algorithm obtains a constant ratio in $lceil n / c rceil + c$ oracle queries, for any $c ge 1$.
arXiv Detail & Related papers (2020-09-10T16:35:54Z) - Practical and Parallelizable Algorithms for Non-Monotone Submodular
Maximization with Size Constraint [20.104148319012854]
We present and parallelizable for a submodular function, not necessarily a monotone, with respect to a size constraint.
We improve the best approximation factor achieved by an algorithm that has optimal adaptivity and nearly optimal complexity query to $0.193 - varepsilon$.
arXiv Detail & Related papers (2020-09-03T22:43:55Z) - Revisiting Modified Greedy Algorithm for Monotone Submodular
Maximization with a Knapsack Constraint [75.85952446237599]
We show that a modified greedy algorithm can achieve an approximation factor of $0.305$.
We derive a data-dependent upper bound on the optimum.
It can also be used to significantly improve the efficiency of such algorithms as branch and bound.
arXiv Detail & Related papers (2020-08-12T15:40:21Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z) - Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample
Complexity [59.34067736545355]
Given an MDP with $S$ states, $A$ actions, the discount factor $gamma in (0,1)$, and an approximation threshold $epsilon > 0$, we provide a model-free algorithm to learn an $epsilon$-optimal policy.
For small enough $epsilon$, we show an improved algorithm with sample complexity.
arXiv Detail & Related papers (2020-06-06T13:34:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.